
CS 357 D
Fundamental Principles and Techniques in

Program Analysis

Zohar Manna and Henny Sipma

Spring 2007

Gates 498

TTh 1:15 - 2:30

CS357D Spring 2007Lecture 1, April 3

Organizational Matters

2

! Instructors:

• Henny Sipma, sipma@cs.stanford.edu
• Zohar Manna, manna@cs.stanford.edu

! Lectures:

• Mostly based on course notes
• Some guest lectures

!Handouts:

• Copies of slides
• Course notes
• Research papers

CS357D Spring 2007Lecture 1, April 3

Organizational Matters

3

!Project options:

• 1-hour lecture in class on related topic
• survey paper on related topic
• implementation of program analysis method
• implementation of decision procedure

!Grading:

• No homeworks
• No exams
• Letter grade: project
• Pass/no credit: attendance

CS357D Spring 2007Lecture 1, April 3

Organizational Matters

4

• Zohar Manna, Amir Pnueli, Temporal Verification of Reactive
Systems. Safety. Springer-Verlag, 1995.

• Flemming Nielson, Hanne Nielson, Chris Hankin, Principles of
Program Analysis, Springer-Verlag, 1999.

• B.A. Davey, H.A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, 2nd ed, 2002.

!Textbooks (optional)

CS357D Spring 2007Lecture 1, April 3

Course goal

5

Provide good understanding of some of the fundamental principles
and techniques of program analysis:

! abstract interpretation
! propagation-based analysis methods
! constraint-based analysis methods

! shape analysis
! separation logic

! decision procedures
! combination of decision procedures

! runtime analysis

CS357D Spring 2007Lecture 1, April 3

Static program analysis: Why?

6

! Gain insight in program behavior based on program text

!Why not run it?

1. Fully deterministic (no input): just run it

2. Fully deterministic (with inputs): run it on different inputs

3. Concurrent program with continuing inputs: run it in different

environments

1 32

OK maybe
hardly any coverage

CS357D Spring 2007Lecture 1, April 3

Static Program Analysis: Why?

7

Static checking can improve software productivity because the
cost of correcting an error is reduced if it is detected early
(from [1])

The next few decades will see a rapid growth in our software
infrastructure, so that eventually we will come to rely on
software in almost every interaction with our environment.
Transportation, energy distribution, communications, banking, and
health care will all depend on software. For end-user
applications, time to market and feature count may continue to
be driving forces but, in the development of our infrastructure,
‘getting it right’ will matter again. (from [2])

CS357D Spring 2007Lecture 1, April 3

Static Program Analysis: What?

8

! Full program verification?

P ! "

!What is the specification?

!Usually too hard

All program behaviors satisfy temporal specification "

(CS 256)

CS357D Spring 2007Lecture 1, April 3

Static Program Analysis: What?

9

type checking

program verification

extended static
checking

effort

co
ve

ra
ge

From (1)

CS357D Spring 2007Lecture 1, April 3

Static Program Analysis: What?

10

type checking

program verification

extended static
checking

effort

co
ve

ra
ge

From (1)

CS357D Spring 2007Lecture 1, April 3

Static Program Analysis: What?

11

!Answer questions about program behaviors:

• does the program always terminate?

• does the program ever reach this (bad) state?

• what is the range of values of this variable at this location?

• is there a possibility of out-of-bound array access?

• is there a possibility of division by zero?

• do these variables point at the same location in the heap?

• what is the maximum amount of memory required?

• synchronization errors (deadlocks, data races)?

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

12

Rice’s Theorem (1953)

Any nontrivial property about the language recognized by a
Turing machine is undecidable.

Informally:

Any interesting program property is undecidable

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

13

programs that
terminate

programs for which method A can
show termination

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

14

programs that
terminate

programs for which method B
 can show termination

Method B is weaker than method A

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

15

programs that
terminate

programs for which method B
 can show termination if loops

are annotated

Method B can make use of user-supplied annotations

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

16

programs that
terminate

programs for which method C
can show termination

Method C is specialized for a particular class of programs of interest

CS357D Spring 2007Lecture 1, April 3

Soundness and Completeness

17

! The ideal static checker is

• sound: if the program has an error, the checker will report it

• complete: if the checker reports an error, it is a genuine error

!Most practical static checkers are neither

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability

18

programs that
terminate

programs for which method C
can show termination

Force programmers to write programs for which termination can be shown

*

*

CS357D Spring 2007Lecture 1, April 3

Soundness and Completeness

19

! The ideal static checker is

• sound: if the program has an error, the checker will report it

• complete: if the checker reports an error, it is a genuine error

!Most practical static checkers are neither

! The real issue is: accuracy

CS357D Spring 2007Lecture 1, April 3

Problem: Complexity

20

In general, accuracy is expensive

! exponential in the size of the program

! exponential in the number of variables

Most of the research in program analysis is focused on this
trade-off between performance and precision

CS357D Spring 2007Lecture 1, April 3

Real Problem: Lack of formal semantics

21

Goal: obtain information about all program behaviors

! (CS 256) SPL : Simple Programming Language

• First-order model: well-defined semantics in terms of
transition systems and program behaviors as sequences of
states

! (Real life) C++ program

• Semantics of the program is defined by the compiler

CS357D Spring 2007Lecture 1, April 3

Many problems

22

! Procedures

! Pointers

! Aliasing

! Optimizing compilers

! Data structures

! Object orientation

!

CS357D Spring 2007Lecture 1, April 3

Termination analysis

23

programs that
terminate

programs for which method A can
show termination

CS357D Spring 2007Lecture 1, April 3

Termination analysis

24

programs that
terminate

Not sound and not complete

programs for which method A can
show termination
(no alias analysis)

CS357D Spring 2007Lecture 1, April 3

Course preview: Abstract interpretation

25

Framework for symbolic execution of programs

! Cousot&Cousot, 1977

! Used to approximate the reachable state space

! Approach: Perform forward propagation in an abstract domain

! Domains considered:

• Linear inequalities (polyhedra)

• Linear equalities

• Intervals

• Octagons, Octahedra

• Template constraint matrices

CS357D Spring 2007Lecture 1, April 3

Course preview: Forward propagation

26

initial states
F1

F2 F3

Fn : set of reachable states after n program steps

reachable states

Symbolic forward simulation to obtain an overapproximation of the reachable
state space (invariants)

CS357D Spring 2007Lecture 1, April 3

Forward propagation

27

F1 = F0 " ("#∈# post(#,F0))

F0 = $

F2 = F1 " ("#∈# post(#,F1))

until

Fn+1 % Fn

with post(#,") = ∃V0 ("(V0) # &#(V0,V))

CS357D Spring 2007Lecture 1, April 3

Forward propagation: two problems

28

1. May not converge in finite time

Example: integer i where i = 0
while (true) do i = i+1

F0 : i = 0

F1 : i = 0 " i = 1

F2 : i = 0 " i = 1 " i = 2

We never reach the fixed point: i ! 0

CS357D Spring 2007Lecture 1, April 3

Forward propagation: two problems

29

2. We may not be able to detect convergence:

checking validity of

Fn+1 % Fn

may not be decidable

CS357D Spring 2007Lecture 1, April 3

Solution to the second problem: Abstract Interpretation

30

Perform the symbolic simulation in an abstract domain

Domain Converges? Reference

Linear equalities yes Karr, 76
Muller-Olm,Seidl, ‘04

Gulwani, Necula, ‘03

Linear inequalities no Cousot,Halbwachs, ‘79

Intervals no Cousot,Cousot, ‘76

Octagons no Mine, ‘01

Octahedrons no Clarisso, Cortadella, ‘04

TCM no SSM, ‘04

Checking for convergence is decidable in all these domains

CS357D Spring 2007Lecture 1, April 3

Forward propagation: Example

31

integer i,j where i=2 # j=0

while true do

i := i + 4
or

(i,j) := (i + 2,j + 1)[]

Abstract domain: Linear inequalities over the reals

CS357D Spring 2007Lecture 1, April 3

Forward propagation: iteration 1

32

F0 : (j = 0) # (i = 2)

post(#1, F0) :

post(#2, F0) :

(0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6)

(j = 0) # (i = 6)

(j = 1) # (i = 4)

F1 :

0

i

j

2 6

#2

#1
0

i

j

2 6

F1

CS357D Spring 2007Lecture 1, April 3

Forward propagation: iteration 2

33

F1 :

post(#1, F1) :

post(#2, F1) :

(0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6)

F2 :

(0 " j " 1) # (i - 2j ! 6) # (i + 2j " 10)

(1 " j " 2) # (i - 2j ! 2) # (i + 2j " 10)

(0 " j " 2) # (i - 2j ! 2) # (i + 2j " 10)

#2

#1
0

i

j

2 6

2

10

F2

0

i

j

2 6

2

10

CS357D Spring 2007Lecture 1, April 3

Forward propagation: widening after iteration 3

34

F1 : (0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6)

F2 : (0 " j " 2) # (i - 2j ! 2) # (i + 2j " 10)

(0 " j " 3) # (i - 2j ! 2) # (i + 2j " 14) F3 :

F3’=F2'F3 : (0 " j) # (i - 2j ! 2)

F3’

0

i

j

2 6

2

10 14

CS357D Spring 2007Lecture 1, April 3

Forward propagation: convergence at iteration 4

35

F3’ = F4

0

i

j

2 6

2

10 14

post(#1, F3’) : (0 " j) # (i - 2j ! 2)

post(#2, F3’) : (0 " j) # (i - 2j ! 2)

F4 = F3’ ∪ post({#1,#2}, F3’) : (0 " j) # (i - 2j ! 2)

CS357D Spring 2007Lecture 1, April 3

Course preview: Constraint-based analysis

36

! Set-based analysis: derive constraints on the set of values that
variables may have at given program locations

! Property-based analysis:

1. Define template property: fix type and shape of the property

2. Encode the conditions for the property to hold as a system of
constraints

3. Solve the constraints

4. Every solution is a property of the given type and shape

CS357D Spring 2007Lecture 1, April 3

Constraint-based analysis

37

! Application to

• Invariant generation

• Generation of ranking functions

• Generation of temporal (safety) properties

CS357D Spring 2007Lecture 1, April 3

Course preview: Decision procedures

38

Decision procedureformula "

valid

not valid

for a theory T

always terminates

CS357D Spring 2007Lecture 1, April 3

Example of use of decision procedures

39

y = 5;
if (x > 5) {
 y = 0;
}
if (x < 3) {
 z = x/y;
}

Possibility of division by zero?

!Use decision procedure to show that

x > 5 # x < 3

is unsatisfiable

CS357D Spring 2007Lecture 1, April 3

Course preview: Decision procedures

40

! Single theory:
• Propositional logic
• Linear arithmetic
• Recursive data structures (term algebras)
• Sets, multisets

! Combination of decision procedures:
• Nelson-Oppen
• Sets, multisets with cardinality
• Recursive data structures with cardinality
• Queues with cardinality

CS357D Spring 2007Lecture 1, April 3

Course preview: other topics

41

! Shape analysis (Reps et al.)

! Separation logic (Reynolds et al.)

! Static analysis tools (FindBugs, Pugh et al.)

! Dynamic program analysis

CS357D Spring 2007Lecture 1, April 3

Approximation

42

! In practice there is a trade-off between
• missed errors (unsoundness)
• spurious warnings (incompleteness)
• performance (complexity)
• annotation overhead

! Balance between cost and performance

! Theory can help to get better approximations at lower cost

CS357D Spring 2007Lecture 1, April 3

Summary

43

! Start with well-defined first-order program execution model

• Abstract interpretation
• Forward propagation
• Constraint-based analysis

! Decision procedures

• useful in any program analysis context

! Techniques for analysis of real-life programming languages

• shape analysis
• separation logic

CS357D Spring 2007Lecture 1, April 3

References

44

(1) Cormac Flanagan, K. Rustan Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, Raymie Stata, Extended Static Checking for Java,
PLDI 2002.

(2) Daniel Jackson and Martin Rinard, Software Analysis: A Roadmap,
in The Future of Software Engineering, ACM Press, 2000.

