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Organizational Matters
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! Instructors: 

• Henny Sipma, sipma@cs.stanford.edu
• Zohar Manna, manna@cs.stanford.edu

! Lectures:

• Mostly based on course notes
• Some guest lectures

!Handouts:

• Copies of slides
• Course notes
• Research papers
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Organizational Matters
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!Project options:

• 1-hour lecture in class on related topic
• survey paper on related topic
• implementation of program analysis method
• implementation of decision procedure

!Grading:

• No homeworks
• No exams
• Letter grade: project
• Pass/no credit: attendance
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Organizational Matters
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• Zohar Manna, Amir Pnueli, Temporal Verification of Reactive 
Systems. Safety. Springer-Verlag, 1995.

• Flemming Nielson, Hanne Nielson, Chris Hankin, Principles of 
Program Analysis, Springer-Verlag, 1999.

• B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, 
Cambridge University Press, 2nd ed, 2002. 

!Textbooks (optional)
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Course goal
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Provide good understanding of some of the fundamental principles 
and techniques of program analysis:

! abstract interpretation
! propagation-based analysis methods
! constraint-based analysis methods

! shape analysis
! separation logic

! decision procedures
! combination of decision procedures

! runtime analysis
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Static program analysis: Why?
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! Gain insight in program behavior based on program text

!Why not run it?

1. Fully deterministic (no input): just run it

2. Fully deterministic (with inputs): run it on different inputs

3. Concurrent program with continuing inputs: run it in different 

environments

1 32

OK maybe
hardly any coverage
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Static Program Analysis: Why?
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Static checking can improve software productivity because the 
cost of correcting an error is reduced if it is detected early 
(from [1])

The next few decades will see a rapid growth in our software 
infrastructure, so that eventually we will come to rely on 
software in almost every interaction with our environment. 
Transportation, energy distribution, communications, banking, and 
health care will all depend on software. For end-user 
applications, time to market and feature count may continue to 
be driving forces but, in the development of our infrastructure, 
‘getting it right’ will matter again. (from [2])
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Static Program Analysis: What?
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! Full program verification?

P ! "

!What is the specification?

!Usually too hard

All program behaviors satisfy temporal specification "

(CS 256)
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Static Program Analysis: What?
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type checking

program verification

extended static
checking

effort

co
ve

ra
ge

From (1)
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Static Program Analysis: What?
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type checking

program verification

extended static
checking

effort

co
ve

ra
ge

From (1)
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Static Program Analysis: What?
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!Answer questions about program behaviors:

• does the program always terminate?

• does the program ever reach this (bad) state?

• what is the range of values of this variable at this location?

• is there a possibility of out-of-bound array access?

• is there a possibility of division by zero?

• do these variables point at the same location in the heap?

• what is the maximum amount of memory required?

• synchronization errors (deadlocks, data races)?

CS357D Spring 2007Lecture 1, April 3

Problem: undecidability
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Rice’s Theorem (1953)

Any nontrivial property about the language recognized by a 
Turing machine is undecidable.

Informally:

Any interesting program property is undecidable
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Problem: undecidability
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programs that 
terminate

programs for which method A can
show termination
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Problem: undecidability
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programs that 
terminate

programs for which method B
 can show termination

Method B is weaker than method A
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Problem: undecidability
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programs that 
terminate

programs for which method B
 can show termination if loops 

are annotated

Method B can make use of user-supplied annotations
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Problem: undecidability
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programs that 
terminate

programs for which method C
can show termination

Method C is specialized for a particular class of programs of interest
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Soundness and Completeness
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! The ideal static checker is

• sound: if the program has an error, the checker will report it

• complete: if the checker reports an error, it is a genuine error

!Most practical static checkers are neither
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Problem: undecidability

18

programs that 
terminate

programs for which method C
can show termination

Force programmers to write programs for which termination can be shown

*

*
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Soundness and Completeness
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! The ideal static checker is

• sound: if the program has an error, the checker will report it

• complete: if the checker reports an error, it is a genuine error

!Most practical static checkers are neither

! The real issue is: accuracy
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Problem: Complexity
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In general, accuracy is expensive

! exponential in the size of the program

! exponential in the number of variables 

Most of the research in program analysis is focused on this 
trade-off between performance and precision
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Real Problem: Lack of formal semantics
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Goal: obtain information about all program behaviors

! (CS 256) SPL : Simple Programming Language

• First-order model: well-defined semantics in terms of 
transition systems and program behaviors as sequences of 
states

! (Real life) C++ program

• Semantics of the program is defined by the compiler

CS357D Spring 2007Lecture 1, April 3

Many problems
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! Procedures

! Pointers

! Aliasing

! Optimizing compilers

! Data structures

! Object orientation

! ...........
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Termination analysis
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programs that 
terminate

programs for which method A can
show termination

CS357D Spring 2007Lecture 1, April 3

Termination analysis
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programs that 
terminate

Not sound and not complete

programs for which method A can
show termination
(no alias analysis)
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Course preview: Abstract interpretation
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Framework for symbolic execution of programs

! Cousot&Cousot, 1977

! Used to approximate the reachable state space

! Approach: Perform forward propagation in an abstract domain

! Domains considered:

• Linear inequalities (polyhedra)

• Linear equalities

• Intervals

• Octagons, Octahedra

• Template constraint matrices
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Course preview: Forward propagation
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initial states
F1

F2 F3

Fn : set of reachable states after n program steps

reachable states

Symbolic forward simulation to obtain an overapproximation of the reachable 
state space (invariants)
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Forward propagation
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F1  = F0 " ("#∈# post(#,F0) )

F0 =  $ 

F2  = F1 " ("#∈# post(#,F1) )

until

Fn+1 % Fn 

with post(#,") = ∃V0 ("(V0) # &#(V0,V) )
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Forward propagation: two problems
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1. May not converge in finite time

Example: integer i where i = 0
while (true) do i = i+1

F0 :  i = 0 

F1 :  i = 0 " i = 1

F2 :  i = 0 " i = 1 " i = 2

We never reach the fixed point: i ! 0
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Forward propagation: two problems
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2. We may not be able to detect convergence: 

checking validity of 

Fn+1 % Fn 

may not be decidable
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Solution to the second problem: Abstract Interpretation
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Perform the symbolic simulation in an abstract domain

Domain Converges? Reference

Linear equalities yes Karr, 76
Muller-Olm,Seidl, ‘04

Gulwani, Necula, ‘03

Linear inequalities no Cousot,Halbwachs, ‘79

Intervals no Cousot,Cousot, ‘76

Octagons no Mine, ‘01

Octahedrons no Clarisso, Cortadella, ‘04

TCM no SSM, ‘04

Checking for convergence is decidable in all these domains
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Forward propagation: Example
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integer i,j where i=2 # j=0

while true do

i := i + 4
or

(i,j) := (i + 2,j + 1)[ ]

Abstract domain: Linear inequalities over the reals
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Forward propagation: iteration 1
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F0 : (j = 0) # (i = 2)

post(#1, F0) :

post(#2, F0) :

(0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6) 

(j = 0) # (i = 6)

(j = 1) # (i = 4)

F1 :

0

i

j

2 6

#2

#1
0

i

j

2 6

F1 
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Forward propagation: iteration 2
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F1 :

post(#1, F1) :

post(#2, F1) :

(0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6) 

F2 :

(0 " j " 1) # (i - 2j ! 6) # (i + 2j " 10) 

(1 " j " 2) # (i - 2j ! 2) # (i + 2j " 10) 

(0 " j " 2) # (i - 2j ! 2) # (i + 2j " 10) 

#2

#1
0

i

j

2 6

2

10

F2 

0

i

j

2 6

2

10
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Forward propagation: widening after iteration 3
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F1 : (0 " j " 1) # (i - 2j ! 2) # (i + 2j " 6) 

F2 : (0 " j " 2) # (i - 2j ! 2) # (i + 2j " 10) 

(0 " j " 3) # (i - 2j ! 2) # (i + 2j " 14) F3 :

F3’=F2'F3 : (0 " j)      # (i - 2j ! 2) 

F3’ 

0

i

j

2 6

2

10 14
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Forward propagation: convergence at iteration 4
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F3’ = F4 

0

i

j

2 6

2

10 14

post(#1, F3’) : (0 " j) # (i - 2j ! 2) 

post(#2, F3’) : (0 " j) # (i - 2j ! 2) 

F4 = F3’ ∪ post({#1,#2}, F3’) : (0 " j) # (i - 2j ! 2) 
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Course preview: Constraint-based analysis
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! Set-based analysis: derive constraints on the set of values that 
variables may have at given program locations

! Property-based analysis:

1. Define template property: fix type and shape of the property

2. Encode the conditions for the property to hold as a system of 
constraints

3. Solve the constraints

4. Every solution is a property of the given type and shape
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Constraint-based analysis
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! Application to

• Invariant generation

• Generation of ranking functions

• Generation of temporal (safety) properties
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Course preview: Decision procedures
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Decision procedureformula "

valid

not valid

for a theory T

always terminates
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Example of use of decision procedures
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y = 5;
if (x > 5) {
    y = 0;
}
if (x < 3) {
    z = x/y;
}

Possibility of division by zero?

!Use decision procedure to show that 

x > 5  #  x < 3

is unsatisfiable
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Course preview: Decision procedures
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! Single theory:
• Propositional logic
• Linear arithmetic
• Recursive data structures (term algebras)
• Sets, multisets

! Combination of decision procedures:
• Nelson-Oppen
• Sets, multisets with cardinality
• Recursive data structures with cardinality
• Queues with cardinality
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Course preview: other topics
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! Shape analysis (Reps et al.)

! Separation logic (Reynolds et al.)

! Static analysis tools (FindBugs, Pugh et al.)

! Dynamic program analysis
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Approximation
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! In practice there is a trade-off between
• missed errors (unsoundness)
• spurious warnings (incompleteness)
• performance (complexity)
• annotation overhead

! Balance between cost and performance

! Theory can help to get better approximations at lower cost
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Summary
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! Start with well-defined first-order program execution model

• Abstract interpretation
• Forward propagation
• Constraint-based analysis

! Decision procedures

• useful in any program analysis context

! Techniques for analysis of real-life programming languages

• shape analysis
• separation logic
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