

Semantics

Lecture 2, April 5	5	CS357D Spring 2007

System Description: Transition systems
Set of typed variables
Example: \{x:int, y:int \}
Initial condition:
first-order formula
Example: $x=0 \wedge y=0$
Compact first-order representation of all sequences of states
that can be generated by a system
Lecture 2, April 5

States

V: Vocabulary -- set of typed variables $\{x, y$: integer, b: boolean $\}$

expression over V	$x+y$
assertion over V	$x>y$

s: state -- interpretation of all variables $\{x: 2, y: 3, b:$ true $\}$ $s[x]=2, s[y]=3, s[b]=$ true
extends to expressions and assertions
Σ : set of all states
$s[x+y]=5$
$s[x>y]=f a l s e$
$z \times z \times\{$ true,false $\}$

Lecture 2, April 5 6

CS357D Spring 2007

Transitions

Example:
$T(\langle x: 2\rangle)=\{\langle x: 3\rangle,\langle x: 4\rangle\}$
$T(\langle x: 3\rangle)=\{\langle x: 4\rangle,\langle x: 5\rangle\}$
$T(\langle x: 4\rangle)=\{\langle x: 5\rangle,\langle x: 6\rangle\}$
$T(\langle x: 5\rangle)=\{\langle x: 6\rangle,\langle x: 7\rangle\}$ $T(\langle x: 6\rangle)=\{\langle x: 7\rangle,\langle x: 8\rangle\}$
represented by a transition relation $\rho_{\mathrm{T}}\left(\mathrm{V}, \mathrm{V}^{\prime}\right)$
V : values of variables in the current state $\rho_{\mathrm{T}}: x^{\prime}=x+1 \vee x^{\prime}=x+2$ V^{\prime} : values of variables in the next state

Transitions

$$
\begin{array}{ll}
\text { A transition } \mathrm{T} \text { is enabled in a state } \mathrm{s} \text { if: } & \mathrm{T}(\mathrm{~s}) \neq \varnothing \\
\text { A transition } \mathrm{T} \text { is disabled in a state } \mathrm{s} \text { if: } & \mathrm{T}(\mathrm{~s})=\varnothing
\end{array}
$$

Example:

Transition T with $\rho_{\mathrm{T}}:(x=0 \vee x=1) \wedge\left(x^{\prime}=x+1 \vee x^{\prime}=x+2\right)$

$$
\begin{array}{ll}
T(\langle x: 0\rangle)=\{\langle x: 1\rangle,\langle x: 2\rangle\} & T(\langle x: 2\rangle)=\varnothing \\
T(\langle x: 1\rangle)=\{\langle x: 2\rangle,\langle x: 3\rangle\} & T(\langle x: 3\rangle)=\varnothing
\end{array}
$$

Lecture 2, April 5

 9
Runs: Example

$v:\{x:$ integer $\}$
O: $x=0$
$\mathcal{J}:\left\{T_{1}, T_{2}, T_{3}\right\}$ with $\left\{\begin{array}{l}\rho_{T 1}: x^{\prime}=x+1 \vee x^{\prime}=x+3 \\ \rho_{T 2}: x^{\prime}=x+2 \vee x^{\prime}=2 x \\ \rho_{T 3}: x^{\prime}=x\end{array}\right.$
$\sigma_{1}: 0,1,2,3,4,5,6,7, \ldots$.
$\sigma_{2}: 0,0,0,0,0,0,0,0$ \qquad
$\sigma_{3}: \quad 0,2,4,8,16,19, \ldots$.
$\sigma_{4}: 0,1,1,3,3,5,5,7,7$, \qquad
$\sigma_{5}: 0,1,2,3,5,6,8,9,18$, \qquad

Runs

Infinite sequence of states
$\sigma: S_{0} S_{1} S_{2} S_{3} S_{4} \ldots \ldots \ldots \ldots$
is a run of Φ if

- Initiality: $s_{0} \approx \Theta$
(so is an initial state)
- Consecution: for all $i>0$
s_{i+1} is a T-successor of s_{i}

for some $T \in \mathcal{J}$

Lecture 2, April 5

10
CS357D Spring 2007

Runs: Example

V : $\{x:$ integer $\}$
$\Theta: x=0 \quad\left\{T_{1}, T_{2}, T_{3}\right\}$ with $\left\{\begin{array}{l}\rho_{\mathrm{T} 1}(x=0 \vee x=1) \wedge\left(x^{\prime}=x+1 \vee x^{\prime}=x+3\right) \\ \rho_{\mathrm{T} 2}: x^{\prime}=x+2 \vee x^{\prime}=2 x \\ \rho_{\mathrm{T} 3}: x^{\prime}=x\end{array}\right.$
$\sigma_{1}: 0,1,2,3,4,5,6,7$, \qquad not a run!
$\sigma_{2}: 0,0,0,0,0,0,0,0$ \qquad
$\sigma_{3}: 0,2,4,8,16,32, \ldots$.
$\sigma_{4}: 0,1,1,3,3,5,5,7,7$, \qquad
$\sigma_{5}: 0,1,2,3,5,6,8,9,18$, \qquad not a run!

System Description: Summary

$$
\text { Transition system: } \Phi:\langle\vee, \Theta, \mathcal{J}\rangle
$$

Run: Initiality + Consecution

$\mathscr{L}(\Phi)$: all runs of Φ

"Behavior of the program"
(all sequences of states that satisfy Initiality and Consecution)

Lecture 2, April 5

13
CS357D Spring 2007

SPL

Simple programming language with constructs (a.o.):

- assignment
- conditional (if - then - else)
- concatenation
- selection
- while

Static global variable initialization

Statements are labeled

- define program locations (equivalence relation on labels)

Lecture 2, April 5	15	Cs357D Spring 2007

Semantics

SPL

Given an SPL program P we can construct the corresponding transition system $\Phi:\langle\mathrm{V}, \Theta, \mathcal{J}\rangle$.

- each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled explicitly by a control variable π that ranges over program locations
- V: program variables $\cup\{\pi\}$
- Θ : program initial condition
Lecture 2, April 5

SPL statements

assignment statement

$l_{1}: x:=e ; l_{2}$

translates into transition T with transition relation

$$
\rho_{\mathrm{T}}: \quad \pi=l_{1} \wedge x^{\prime}=e \wedge \pi^{\prime}=l_{2} \wedge \operatorname{pres}(\vee-\{x, \pi\})
$$

conditional statement

l_{1} : if c then $I_{2}: S_{1}$ else $l_{3}: S_{2}$

translates into transition T with transition relation

$$
\rho_{T}: \quad \pi=l_{1} \wedge\left(\left(c \wedge \pi^{\prime}=l_{2}\right) \vee\left(\neg c \wedge \pi^{\prime}=l_{3}\right)\right) \wedge \operatorname{pres}(\vee-\{\pi\})
$$

Lecture 2, April 5

17
CS357D Spring 2007

Semantics

SPL semantics

Full semantics of SPL in

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety. Springer-Verlag 1995. pp 18-36.

Reachable state space

state s is Φ-reachable if it appears in some Φ-run
$\sigma: s_{0} s_{1} s_{2} s_{3} s_{4}$ \qquad
system Φ is finite-state if the set of Φ-reachable states is finite
Notation: Σ : state space
$\Sigma_{\Phi_{\triangleright}}$: Φ-reachable state space
Example:
$V:\left\{b_{1}, b_{2}\right\}$
$\Sigma=\{\langle t, t\rangle,\langle t, f\rangle,\langle f, t\rangle,\langle f, f\rangle\}$
$\Theta: b_{1} \wedge b_{2}$
$\Sigma_{\phi \triangleright}=\{\langle t, t\rangle,\langle f, f\rangle\}$
$T:\{T\}$ with $\rho_{T}: b_{1}{ }^{\prime}=\neg b_{1} \wedge b_{2}{ }^{\prime}=\neg b_{2}$

Lecture 2, April 5 20

Reachable state space

state s is Φ-reachable if it appears in some Φ-run
$\sigma: s_{0} s_{1} s_{2} s_{3} s_{4}$ \qquad
system Φ is finite-state if the set of Φ-reachable states is finite

Notation: $\quad \Sigma$: state space
$\Sigma_{\Phi_{\triangleright}}: \Phi$-reachable state space
Example:

$$
\begin{aligned}
& \Sigma=N \\
& \Sigma_{\Phi \triangleright}=\{x: 0, x: 1\}
\end{aligned}
$$

V : $\{x:$ int $\}$
O: $x=0$
$\mathcal{T}:\{T\}$ with $\rho_{T}: x=0 \wedge x^{\prime}=x+1$

Lecture 2, April 5

21
CS357D Spring 2007

Reachable state space vs runs

System © may have any combination of
finite state space
infinite state space
finite \# of runs
infinite \# of runs

Reachable state space

state s is Φ-reachable if it appears in some Φ-run
$\sigma: s_{0} s_{1} s_{2} s_{3} s_{4}$ \qquad
system Φ is finite-state if the set of Φ-reachable states is finite

Notation: Σ : state space
$\Sigma_{\Phi_{\triangleright}}: \Phi$-reachable state space

$$
\begin{array}{lr}
\text { Example: } & \Sigma=N \\
\text { V: }\{x: \text { int }\} & \Sigma \Sigma_{\triangleright}=? \\
\Theta: 0 \leq x \leq M & \\
& \pi:\left\{T_{1}, T_{2}\right\} \text { with } \\
& \rho_{\mathrm{T} 1}: \operatorname{odd}(x) \wedge x^{\prime}=3 x+1
\end{array}
$$

Lecture 2, April 5

Invariants

An invariant q of program P is

- a superset of the reachable state space of P
- q is an assertion (first-order formula)
- also written:

$$
\begin{array}{ll}
P \vDash q & \text { all reachable states of } P \text { satisfy } q \\
P \vDash \square q & \text { all states of all runs of } P \text { satisfy } q
\end{array}
$$

Properties of program behaviors

First-order logic	Temporal logic	
models are states	models are sequences of states	
$\langle x: 3, y: 1\rangle \\| x>y$	$\left\langle S_{0} S_{1} S_{2} S_{3} \ldots \ldots.\right\rangle \vDash \varphi$	
assertion p represents the set of states for which p is true	temporal formula φ represents the set of sequences of states for which φ is true	
Lecture 2, April 5	25. CS357D Spring 2007	
Specification: underlying assertion language		

Assertions represent sets of states

Specification: underlying assertion language

Assertion language \bar{a} :
first-order language over system variables (+ theories for their domains)

Formulas in \bar{Q} : state formulas (aka assertions)
evaluated over a single state

p holds at s
s satisfies s
s is a p-state

Example:

$$
s:\langle x: 4, y: 1\rangle
$$

$s \| x=0 \vee y=1$
$s \|=x>y$
$s \| x=y+3$
s $\| \neq \operatorname{odd}(x)$

Specification: underlying assertion language

assertion p is state-satisfiable if $s \Vdash p$ for some state $s \in \Sigma$ Example: $x>0$
assertion p is state-valid $s \| p$ for all states $s \in \Sigma$

$$
\text { Example: } x>y \rightarrow x+1>y
$$

State validity and system state validity

Given a system Φ

- for a state formula q

$$
\| q
$$

q holds in all states
q is state-valid

- for a state formula q

$$
\Phi \Vdash q
$$

q holds in all Φ-reachable states q is Φ-state-valid

$$
\text { Example: } \Phi=\langle V, \Theta, J\rangle
$$

$$
V:\{x\}
$$

$$
\Theta: x=0
$$

$$
\pi:\{T\} \text { with } \rho_{\mathrm{T}}: x^{\prime}=x+2
$$

$\Phi \vDash x \geq 0 \wedge \operatorname{even}(x)$

Verification conditions: examples

$$
\begin{gathered}
\mathbf{P} \wedge \boldsymbol{\rho}_{\boldsymbol{T}} \rightarrow \mathbf{q}^{\prime} \\
\{p\} \tau\{q\}
\end{gathered}
$$

$$
\begin{array}{lc}
\{x>0\} x^{\prime}=x+1\{x>1\} & x>0 \wedge x^{\prime}=x+1 \rightarrow x^{\prime}>1 \\
& \text { substitute } x+1 \text { for } x^{\prime}: \quad x>0 \rightarrow(x+1)>1 \\
\{x>0\} x^{\prime}=x+1\{\text { true }\} & x>0 \wedge x^{\prime}=x+1 \rightarrow \text { true }
\end{array}
$$

$\{x \geq 0\} x>0 \wedge x^{\prime}=x-1\{x \geq 0\}$
$\{$ true $\} x>0 \wedge x^{\prime}=x-1\{x \geq 0\}$

Lecture 2, April 5	31	CS357D Spring 2007

Verification condition

$$
p \wedge \rho_{T} \rightarrow q^{\prime}
$$

Starting from a state that satisfies p, transition T leads to a state that satisfies q

$$
\text { aka "Hoare triple" } \quad\{p\} \mathrm{T}\{q\}
$$

Lecture 2, April 5
30

Proving invariance properties

Invariant: $\quad \square \mathrm{p} \quad$ for state formula p

We want to prove $\Phi \vDash \square$ p

$$
\text { every state of every run of } \Phi \text { satisfies } p
$$

Recall: A sequence of states σ : $s_{0}, s_{1}, s_{2} \ldots$
is a run of $\Phi:\langle V, \Theta, \mathcal{J}\rangle$ if

- Initiality: $s_{0} \vDash \Theta$
- Consecution: for each $j \geq 0, s_{j+1}$ is a T-successor of s_{j}, for some $t \in \mathcal{T}$

Proving invariance properties

Proving $\Phi \vDash \square \mathrm{p}$

means proving that every state of every sequence of states that satisfies

- Initiality: $s_{0} \vDash \Theta$
- Consecution: for each $\mathrm{j} \geq 0, \mathrm{~s}_{\mathrm{j}+1}$ is a T -successor of s_{j}, for some $T \in \mathcal{T}$
also satisfies p

Proof by induction:

Base case: $\Theta \rightarrow p \quad$ ensures that every initial state satisfies p Inductive step: $p \wedge \rho_{T} \rightarrow p^{\prime}$ for every $T \in \mathscr{J}$
ensures that p is preserved by all transitions

Lecture 2, April 5	33	CS357D Spring 2007

Semantics

Verification rule B-INV (basic invariance)

For assertion q

$$
\begin{array}{ll}
\text { B1. } & \Phi \vDash \Theta \rightarrow q \\
\text { B2. } & \Phi \vDash\{q\} \mathscr{J}\{q\} \\
\hline & \Phi \vDash \square q
\end{array}
$$

$\{q\} \mathcal{J}\{q\}$ stands for $\{q\} T\{q\}$ for all $T \in \mathcal{J}$

B-INV reduces the proof of an invariant to checking the validity of $|\mathcal{J}|+1$ first-order verification conditions in the underlying assertion language.

Lecture 2, April 5	34	CS357D Spring 2007

B-INV : example

B-INV : example

$\Phi:$
to prove $\Phi \models \square(x \geq 0)$
$V:\{x, y\}$
$\Theta: x=0 \wedge y=0$
J: $\left\{T_{1}, T_{2}\right\}$ with $\rho_{T 1}: x^{\prime}=x+y \wedge y^{\prime}=y+1$

$$
\rho_{\mathrm{T} 2}: x>0 \wedge x^{\prime}=x-1
$$

B1: $x=0 \wedge y=0 \rightarrow x \geq 0 \quad \checkmark$
B2: $\quad x \geq 0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y+1 \rightarrow x^{\prime} \geq 0 \quad x$
$x \geq 0 \wedge x>0 \wedge x^{\prime}=x-1 \rightarrow x^{\prime} \geq 0 \quad \checkmark$
$x \geq 0$ is an invariant, but it is not inductive

Lecture 2, April 5

37
CS357D Spring 2007

Non-inductive invariants

Lecture 2, April 5
39

Verification rule B-INV (basic invariance)

For assertion q
B1. $\quad \Phi \vDash \Theta \rightarrow q$
B2. $\quad \Phi \vDash\{q\}=\pi\{q\}$
$\Phi \vDash \square q$
if $B 1$ and $B 2$ are (state) valid then q is inductive every inductive assertion is an invariant
the converse is not true: not every invariant is inductive

Lecture 2, April 5	38	CS357D Spring 2007

Non-inductive invariants

Strategy: strengthen quntil it is inductive

Lecture 2, April 5	40	Cs357D Spring 2007

Strategy 1: Strengthening

Strategy 2: Incremental Proof

Φ :

$$
\text { to prove } \Phi \vDash \square(x \geq 0)
$$

$V:\{x, y\}$
$\Theta: x=0 \wedge y=0$
$\mathcal{J}:\left\{T_{1}, T_{2}\right\}$ with $\rho_{\mathrm{T} 1}: x^{\prime}=x+y \wedge y^{\prime}=y+1$ first prove $\Phi \vDash \square(y \geq 0)$
and then prove
$\rho_{\text {T } 2}: x>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y$
$\phi \vDash \square(x \geq 0)$
relative to $\square(y \geq 0)$
B1: $\quad x=0 \wedge y=0 \rightarrow x \geq 0$
B2: $\quad x \geq 0 \wedge y \geq 0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y+1 \rightarrow x^{\prime} \geq 0$
$x \geq 0 \wedge x>0 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \rightarrow x^{\prime} \geq 0$
$x \geq 0$ is an invariant and is inductive relative to $y \geq 0$

