		Computational Model			
	CS 357 D		Behaviors:	sequences of s	states
	Lecture 2 Computational Model		System description:		n systems order representation of all states that can be generated
			Programming language:		rogramming language) ned semantics in terms of ems
<u>ht</u>	t <u>p://cs357d.stanford.edu</u> / April 5, 2007		Reference: Zohar Manna, Amir Pnueli, Te Springer-Verlag, 1995.	emporal Verification	n of Reactive Systems: Safety,
Lecture 2, April 5	I	CS357D Spring 2007	Lecture 2, April 5	2	CS357D Spring 2007
Properties of interest Invariants: Loop termination:	overapproximation of the state space demonstrated by the exis ranking function	tence of a	Java byte code ? ? ? Transition system sequences of states	++ program ???? ↓ Assembly Code ↓ ·····? ↓	conditions on program text conditions on description Properties of interest CS357D Spring 2007
Lecture 2, April 5	3	CS357D Spring 2007	Lecture 2, April 5	4	CS357D Spring 2007

States {x,y: integer, b: boolean} V: Vocabulary -- set of typed variables expression over V x+y assertion over V x>y {x:2,y:3,b:true} s: state -- interpretation of all variables s[x]=2,s[y]=3,s[b]=true extends to expressions s[x+y]=5 and assertions s[x>y]=false $Z \times Z \times \{$ true, false $\}$ Σ : set of all states Lecture 2, April 5 6 CS357D Spring 2007 Transitions \mathcal{J} : finite set of transitions Example: $T \in \mathcal{T}: \Sigma \rightarrow 2^{\Sigma}$ $T(<x:2>) = \{<x:3>,<x:4>\}$

Transitions	Runs
A transition τ is enabled in a state s if: $\tau(s) \neq \emptyset$ A transition τ is disabled in a state s if: $\tau(s) = \emptyset$	Infinite sequence of states $\sigma:\ s_0\ s_1\ s_2\ s_3\ s_4\$ is a run of Φ if
Example:	Initiality: s₀ ⊧ Θ (s₀ is an initial state)
Transition τ with ρ_{τ} : (x = 0 \lor x = 1) \land (x' = x + 1 \lor x' = x + 2)	Consecution: for all i > 0
τ(<x:0>) = {<x:1>,<x:2>} τ(<x:2>) = Ø</x:2></x:2></x:1></x:0>	s_{i+1} is a T-successor of s_i s_0 s_1 s_2 s_3
$T(\langle x:1 \rangle) = \{\langle x:2 \rangle, \langle x:3 \rangle\}$ $T(\langle x:3 \rangle) = \emptyset$	for some $\tau \in \mathcal{T}$
ecture 2, April 5 9 CS357D Spring 2007	Lecture 2, April 5 10 CS357D Spring 200
Runs: Example	Runs: Example
V: {x:integer} Θ : x=0 \mathcal{T} : { τ_1 , τ_2 , τ_3 } with $\begin{cases} \rho_{\tau_1} : x'=x+1 \lor x'=x+3 \\ \rho_{\tau_2} : x'=x+2 \lor x'=2x \\ \rho_{\tau_3} : x'=x \end{cases}$	$\begin{array}{c} \text{V: } \{\text{x:integer}\} \\ \Theta: \ \text{x=0} \\ \mathcal{T}: \{\tau_1, \ \tau_2, \ \tau_3\} \ \text{ with } \end{array} \qquad \qquad$
σ1: 0, 1, 2, 3, 4, 5, 6, 7,	σ1: 0, 1, 2, 3, 4, 5, 6, 7,not a run!
σ ₂ : 0, 0, 0, 0, 0, 0, 0, 0	σ ₂ : 0, 0, 0, 0, 0, 0, 0, 0
σ_3 : 0, 2, 4, 8, 16, 19,	σ_3 : 0, 2, 4, 8, 16, 32,
σ ₄ : 0, 1, 1, 3, 3, 5, 5, 7, 7,	σ ₄ : 0, 1, 1, 3, 3, 5, 5, 7, 7,
σ ₅ : 0, 1, 2, 3, 5, 6, 8, 9, 18,	σ ₅ : 0, 1, 2, 3, 5, 6, 8, 9, 18, not a run!

		Reachable state space		
state s is Φ -reachable if it appears in some Φ -run		state s is Φ -reachable if it appears in some Φ -run		
σ : $s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ \dots$		$\sigma: s_0 s_1 s_2 s_3 s_4$		
system Φ is <mark>finite-state</mark> i	if the set of Φ -reachable states is finite	system Φ is finite-state if	f the set of Φ -reachable states is finite	
Notation: Σ : state space		Notation: Σ : state space		
$\Sigma_{\Phi \triangleright}$: Φ -reachable state space		Σ_{Φ_P} : Φ -reachable state space		
Example: V: {x:int} O: x=0	$\Sigma = N$ $\Sigma_{\Phi \vdash} = \{x:O, x:I\}$	Example: V: {x:int} Θ: 0 ≤ x ≤ M	$\Sigma = N$ $\Sigma_{\Phi \succ} = ?$	
J: {τ} with ρ _τ : x=0	∧ x′=x+1	$\mathcal{T}: \{\tau_1, \tau_2\} \text{ with} \\ \rho_{\tau_1}: \text{ odd}(x) \land x' = \\ \rho_{\tau_2}: \text{ even}(x) \land x'$	an 2n i mahlam	
ecture 2, April 5	21 CS357D Spring 2007	Lecture 2, April 5	22 CS357D Spring 2007	
Reachable state space v s System Φ may have any		An invariant q of program		
Reachable state space vs System Φ may have any finite state space		-	hable state space of P	
System Φ may have any	combination of finite # of runs	An invariant q of program • a superset of the react • q is an assertion (first- • also written:	hable state space of P	
System Φ may have any	combination of	An invariant q of program • a superset of the react • q is an assertion (first- • also written:	hable state space of P -order formula)	
System Φ may have any finite state space	combination of finite # of runs	An invariant q of program → a superset of the react → q is an assertion (first- → also written: P ⊫ q	hable state space of P -order formula) all reachable states of P satisfy q	

Proving invariance properties

Proving $\Phi \models \Box_P$

means proving that every state of every sequence of states that satisfies

- Initiality: $s_0 \models \Theta$
- \clubsuit Consecution: for each j≥0, s_{j+1} is a $\tau\text{-successor}$ of $s_j,$

for some $\tau \in \mathcal{J}$

also satisfies p

Proof by induction:

Base case: $\Theta \rightarrow p$ ensures that every initial state satisfies p

33

Inductive step: $p \land \rho_{\tau} \rightarrow p'$ for every $\tau \in \mathcal{J}$

ensures that p is preserved by all transitions

CS357D Spring 2007

Lecture 2, April 5

For assertion q B1. $\Phi \models \Theta \rightarrow q$ B2. $\Phi \models \{q\} \mathcal{J} \{q\}$ $\Phi \models \Box q$

{q} \mathcal{T} {q} stands for {q} T {q} for all $\tau \in \mathcal{T}$

B-INV reduces the proof of an invariant to checking the validity of $|\mathcal{T}| + 1$ first-order verification conditions in the underlying assertion language.

34

CS357D Spring 2007

Semantics Java program C++ program ₩ ???? ???? Java SPL Petri Assembly byte conditions on program text Net Code program code ···· Transition system conditions on description sequences of states Properties of interest for invariants 35 Lecture 2, April 5 CS357D Spring 2007

B-INV : example

to prove	Ф⊨□(х≥0)
B1.	$\Phi \Vdash \Theta \twoheadrightarrow q$
B2.	$\Phi \Vdash \{q\} \ \tau_1 \ \{q\}$
✓ B2.	Φ⊫ {q} τ₂ {q}
	B1. B2.

Lecture 2, April 5

36

B-INV : example

to prove $\Phi \models \Box(x \ge 0)$ Φ: V: {x,y} Θ: x=0 ∧ y=0 \mathcal{T} : { τ_1, τ_2 } with ρ_{τ_1} : x'=x+y \land y'=y+1 $\rho_{\tau 2}$: x>0 \wedge x'=x-1 B1: $x=0 \land y=0 \rightarrow x \ge 0$ \checkmark B2: $x \ge 0 \land x' = x + y \land y' = y + 1 \rightarrow x' \ge 0 \times$ $x \ge 0 \land x > 0 \land x' = x - 1 \rightarrow x' \ge 0 \qquad \checkmark$ x≥0 is an invariant, but it is not inductive 37 Lecture 2, April 5 CS357D Spring 2007 Non-inductive invariants Σ Σ₀⊳ 39 Lecture 2, April 5 CS357D Spring 2007 Verification rule B-INV (basic invariance)

For assertion q B1. $\Phi \models \Theta \rightarrow q$ B2. $\Phi \models \{q\} \ \mathcal{T} \{q\}$ $\Phi \models \Box q$

if B1 and B2 are (state) valid then q is inductive

every inductive assertion is an invariant

the converse is not true: not every invariant is inductive

38

Lecture 2, April 5

CS357D Spring 2007

Non-inductive invariants

Lecture 2, April 5

Strategy 1: Strengthening		Strategy 2: Incremental Proof		
$ \begin{array}{l} \Phi : \\ V: \; \{x,y\} \\ \Theta : \; x = 0 \; \land \; y = 0 \\ \mathcal{T} : \; \{\tau_1,\tau_2\} \; \text{ with } \rho_{\tau_1} : \; x' = x + y \; \land \; y' = y + 1 \\ \rho_{\tau_2} : \; x > 0 \; \land \; x' = x - 1 \; \land \; y' = y \end{array} $	to prove $\Phi \models \Box(x \ge 0)$ strengthen it to $\Phi \models \Box(x \ge 0 \land y \ge 0)$	$ \begin{array}{c} \Phi: \\ V: \{x,y\} \\ \Theta: \ x=0 \ \land \ y=0 \\ \fbox{T}: \{\tau_1,\tau_2\} \ \text{ with } \rho_{\tau_1}: \ x'=x+y \ \land \ y'=y \\ \rho_{\tau_2}: \ x>0 \ \land \ x'=x-1 \end{array} $	· Ψ ⊨ ⊔(x20)	
B1: $x=0 \land y=0 \rightarrow x \ge 0 \land y \ge 0$	1	B1: $x=0 \land y=0 \rightarrow x \ge 0$	1	
B2: $x \ge 0 \land y \ge 0 \land x' = x + y \land y' = y + 1 \rightarrow x' \ge 0$	∧ y'≥0 ✓	B2: x≥0 ∧ y≥0 ∧ x'=x+y ∧ y'=y+1 -	→ x′≥0 ✓	
$x \ge 0 \land x > 0 \land x' = x - 1 \land y' = y \rightarrow x' \ge 0 \land y$	√≥0 ✓	x≥0 \land x>0 \land x'=x-1 \land y'=y \rightarrow x	x′≥0 √	
x≥0 \land y≥0 is an invariant and is inductive		x≥0 is an invariant and is inductive r	relative to y≥0	
ecture 2, April 5 41	CS357D Spring 2007	Lecture 2, April 5 42	CS357D Spring 2007	