
CS357D Spring 2007Lecture 2, April 5 1

CS 357 D
Lecture 2

http://cs357d.stanford.edu/

April 5, 2007

Computational Model

CS357D Spring 2007Lecture 2, April 5 2

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

Computational Model

sequences of states

state transition systems
compact first-order representation of all
sequences of states that can be generated
by a system

Behaviors:

System description:

Programming language: SPL (simple programming language)

with well-defined semantics in terms of
transition systems

CS357D Spring 2007Lecture 2, April 5

Properties of interest

3

Invariants: overapproximation of the reachable
state space

Loop termination: demonstrated by the existence of a
ranking function

CS357D Spring 2007Lecture 2, April 5

Semantics

4

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 2, April 5

Semantics

5

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

bug finding

CS357D Spring 2007Lecture 2, April 5

States

6

V: Vocabulary -- set of typed variables

expression over V

assertion over V

{x,y: integer, b: boolean}

x+y

x>y

s: state -- interpretation of all variables

extends to expressions
and assertions

{x:2,y:3,b:true}

s[x]=2,s[y]=3,s[b]=true

s[x+y]=5

s[x>y]=false

!: set of all states Z ! Z ! {true,false}

CS357D Spring 2007Lecture 2, April 5

System Description: Transition systems

7

 &: < V , ' , T >

Set of typed variables

Initial condition:
 first-order formula Set of transitions

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x:int, y:int}

CS357D Spring 2007Lecture 2, April 5

Transitions

8

T: finite set of transitions

"!T: # $ 2#

s

#
"-successors of s"(s):

.

represented by a transition relation %"(V,V’)

V : values of variables in the current state
V’: values of variables in the next state

Example:

%": x’=x+1 " x’=x+2

"(<x:2>) = {<x:3>,<x:4>}
"(<x:3>) = {<x:4>,<x:5>}
"(<x:4>) = {<x:5>,<x:6>}
"(<x:5>) = {<x:6>,<x:7>}
"(<x:6>) = {<x:7>,<x:8>}

.......

...
...
.

CS357D Spring 2007Lecture 2, April 5

Transitions

9

A transition " is enabled in a state s if: "(s) ! ∅

A transition " is disabled in a state s if: "(s) = ∅

Example:

Transition " with %": (x = 0 " x = 1) # (x’ = x + 1 " x’ = x + 2)

"(<x:0>) = {<x:1>,<x:2>}

"(<x:1>) = {<x:2>,<x:3>}

"(<x:2>) = ∅
"(<x:3>) = ∅

CS357D Spring 2007Lecture 2, April 5

Runs

10

Infinite sequence of states

(: s0 s1 s2 s3 s4

is a run of & if

$ Initiality: s0 % ' (s0 is an initial state)

$ Consecution: for all i > 0

si+1 is a "-successor of si

for some " ∈ T

s0 s1 s2 s3

" " " "

CS357D Spring 2007Lecture 2, April 5

Runs: Example

11

V: {x:integer}

': x=0

T: {"1, "2, "3} with
%"1 : x’=x+1 " x’=x+3
%"2 : x’=x+2 " x’=2x
%"3 : x’=x

{

(1: 0, 1, 2, 3, 4, 5, 6, 7,

(2: 0, 0, 0, 0, 0, 0, 0, 0

(3: 0, 2, 4, 8, 16, 19,

(4: 0, 1, 1, 3, 3, 5, 5, 7, 7,

(5: 0, 1, 2, 3, 5, 6, 8, 9, 18,

CS357D Spring 2007Lecture 2, April 5

Runs: Example

12

V: {x:integer}

': x=0

T: {"1, "2, "3} with
%"1 : (x=0 " x=1) # (x’=x+1 " x’=x+3)
%"2 : x’=x+2 " x’=2x
%"3 : x’=x

{

(1: 0, 1, 2, 3, 4, 5, 6, 7,

(2: 0, 0, 0, 0, 0, 0, 0, 0

(3: 0, 2, 4, 8, 16, 32,

(4: 0, 1, 1, 3, 3, 5, 5, 7, 7,

(5: 0, 1, 2, 3, 5, 6, 8, 9, 18, not a run!

not a run!

CS357D Spring 2007Lecture 2, April 5

System Description: Summary

13

Transition system: &: < V , ' , T >

Run: Initiality + Consecution

L(&): all runs of &

(all sequences of states that satisfy
Initiality and Consecution)

“Behavior of the program”

CS357D Spring 2007Lecture 2, April 5

Semantics

14

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 2, April 5

SPL

15

Simple programming language with constructs (a.o.):

) assignment

) conditional (if - then - else)

) concatenation

) selection

) while

Static global variable initialization

Statements are labeled
$ define program locations (equivalence relation on labels)

CS357D Spring 2007Lecture 2, April 5

SPL

16

Given an SPL program P we can construct the corresponding

transition system &: < V , ' , T >.

) each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled
explicitly by a control variable " that ranges over program locations

) V: program variables ∪ {"}

)': program initial condition

CS357D Spring 2007Lecture 2, April 5

SPL statements

17

l1: x := e; l2assignment statement

translates into transition " with transition relation

%": " = l1 # x’ = e # "’ = l2 # pres(V - {x,"})

conditional statement l1: if c then l2: S1 else l3: S2

translates into transition " with transition relation

%": " = l1 # ((c # "’= l2) " (¬c # "’= l3)) # pres(V - {"})

y’=y for all
other variables

in V

CS357D Spring 2007Lecture 2, April 5

SPL semantics

18

Full semantics of SPL in

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive
Systems: Safety. Springer-Verlag 1995. pp 18-36.

CS357D Spring 2007Lecture 2, April 5

Semantics

19

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 2, April 5

Reachable state space

20

state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4

system & is finite-state if the set of &-reachable states is finite

Notation: # : state space

#&&: &-reachable state space

Example:
V: {b1, b2}
': b1#b2

T: {"} with %": b1’=¬b1#b2’=¬b2

= {<t,t>,<t,f>,<f,t>,<f,f>}

#&& = {<t,t>,<f,f>}

CS357D Spring 2007Lecture 2, April 5

Reachable state space

21

state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4

system & is finite-state if the set of &-reachable states is finite

Notation: # : state space

#&&: &-reachable state space

Example:
V: {x:int}
': x=0

T: {"} with %": x=0 # x’=x+1

= N

#&& = {x:0, x:1}

CS357D Spring 2007Lecture 2, April 5

Reachable state space

22

state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4

system & is finite-state if the set of &-reachable states is finite

Notation: # : state space

#&&: &-reachable state space

Example:
V: {x:int}
': 0 # x # M

T: {"1,"2} with

 %"1: odd(x) # x’=3x+1
 %"2: even(x) # x’=x/2

= N

#&& = ?

a.k.a. Collatz problem
or 3n+1 problem

CS357D Spring 2007Lecture 2, April 5

Reachable state space vs runs

23

⊗finite state space

infinite state space

finite # of runs

infinite # of runs

System & may have any combination of

CS357D Spring 2007Lecture 2, April 5

Invariants

24

) a superset of the reachable state space of P

) q is an assertion (first-order formula)
) also written:

An invariant q of program P is

P ' q all reachable states of P satisfy q

P (!q all states of all runs of P satisfy q

CS357D Spring 2007Lecture 2, April 5

Properties of program behaviors

25

Temporal logic

models are sequences of states

temporal formula *
represents

the set of sequences of states
for which * is true

First-order logic

models are states

assertion p
represents

the set of states
for which p is true

<x:3,y:1> ' x > y <s0 s1 s2 s3> (*

CS357D Spring 2007Lecture 2, April 5

Specification: underlying assertion language

26

Assertion language A:

first-order language over system variables
(+ theories for their domains)

Formulas in A: state formulas (aka assertions)

evaluated over a single state

s ' p iff s[p] = true

p holds at s
s satisfies s
s is a p-state

Example:
 s: <x:4, y:1>

s ' x=0 " y=1
s ' x > y
s ' x = y+3
s) odd(x)

CS357D Spring 2007Lecture 2, April 5

Specification: underlying assertion language

27

x>0
x>5

#

x2< 100

Assertions represent sets of states

CS357D Spring 2007Lecture 2, April 5

Specification: underlying assertion language

28

assertion p is state-satisfiable if s ' p for some state s∈#

assertion p is state-valid if s ' p for all states s∈#
Example: x>y $ x+1 > y

Example: x>0

CS357D Spring 2007Lecture 2, April 5

State validity and system state validity

29

• for a state formula q

' q

q holds in all states
q is state-valid

Example: ' x=1 $ x>0

Given a system &

• for a state formula q

& ' q

q holds in all &-reachable states
q is &-state-valid

Example: & = <V,',T>

V: {x}
': x=0
T: {"} with %": x’=x+2

& ' x $ 0 # even(x)

CS357D Spring 2007Lecture 2, April 5

Verification condition

30

p # "# $ q’

Starting from a state that satisfies p, transition " leads to a state
that satisfies q

{p} " {q}aka “Hoare triple”

"

p q

CS357D Spring 2007Lecture 2, April 5

Verification conditions: examples

31

{x>0} x’=x+1 {x>1}

p # "# $ q’

{p} " {q}

x>0 # x’=x+1 $ x’>1

substitute x+1 for x’: x>0 $ (x+1) > 1

{x>0} x’=x+1 {true} x>0 # x’=x+1 $ true

{x$0} x>0 # x’=x-1 {x$0}

{true} x>0 # x’=x-1 {x$0}

CS357D Spring 2007Lecture 2, April 5

Proving invariance properties

32

Invariant: !" for state formula p

We want to prove & (!"!

every state of every run of & satisfies p

Recall: A sequence of states (: s0,s1,s2....

is a run of &: <V,',T> if

$ Initiality: s0 ('

$ Consecution: for each j$0, sj+1 is a "-successor of sj,

 for some "∈T

CS357D Spring 2007Lecture 2, April 5

Proving invariance properties

33

Proving & (!"

means proving that every state of every sequence of states that
satisfies

$ Initiality: s0 ('
$ Consecution: for each j$0, sj+1 is a "-successor of sj,

 for some "∈T
also satisfies p

Proof by induction:

Base case: ' $ p ensures that every initial state satisfies p

Inductive step: p#%"$p’ for every "∈T
ensures that p is preserved by all transitions

CS357D Spring 2007Lecture 2, April 5

Verification rule B-INV (basic invariance)

34

For assertion q

B1. & ' ' $ q

B2. & ' {q} T {q}

& (!q

 {q} T {q} stands for {q} " {q} for all "∈T

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order verification conditions in the underlying assertion

language.

CS357D Spring 2007Lecture 2, April 5

Semantics

35

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

for invariants

CS357D Spring 2007Lecture 2, April 5

B-INV : example

36

V: {x}
': x=0
T: {"1,"2} with %"1: x’=x+1

 %"2: x>0 # x’=x-1

&: to prove &(!(x$0)

B1: x=0 $ x$0

B2: x$0 # x’=x+1 $ x’$0

x$0 # x>0 # x’=x-1 $ x’$0

+

+

+

B1. & ' ' $ q

B2. & ' {q} "1 {q}

B2. & ' {q} "2 {q}

CS357D Spring 2007Lecture 2, April 5

B-INV : example

37

V: {x,y}
': x=0 # y=0

T: {"1,"2} with %"1: x’=x+y # y’=y+1

 %"2: x>0 # x’=x-1

&: to prove &(!(x$0)

B1: x=0 # y=0 $ x$0

B2: x$0 # x’=x+y # y’=y+1 $ x’$0

x$0 # x>0 # x’=x-1 $ x’$0

+

%

+

x$0 is an invariant, but it is not inductive

CS357D Spring 2007Lecture 2, April 5

Verification rule B-INV (basic invariance)

38

For assertion q

B1. & ' ' $ q

B2. & ' {q} T {q}

& (!q

if B1 and B2 are (state) valid then q is inductive

every inductive assertion is an invariant

the converse is not true: not every invariant is inductive

CS357D Spring 2007Lecture 2, April 5

q

*

Non-inductive invariants

39

#

#&&

CS357D Spring 2007Lecture 2, April 5

q

*

#

#&&

Non-inductive invariants

40

Strategy: strengthen q until it is inductive

CS357D Spring 2007Lecture 2, April 5

Strategy 1: Strengthening

41

V: {x,y}
': x=0 # y=0

T: {"1,"2} with %"1: x’=x+y # y’=y+1

 %"2: x>0 # x’=x-1 # y’=y

&: to prove & (!(x$0)

B1: x=0 # y=0 $ x$0 # y$0

B2: x$0 # y$0 # x’=x+y # y’=y+1 $ x’$0 # y’$0

x$0 # x>0 # x’=x-1 # y’=y $ x’$0 # y’$0

+

+

x$0 # y$0 is an invariant and is inductive

strengthen it to

& (!(x$0 # y$0)

+

CS357D Spring 2007Lecture 2, April 5

Strategy 2: Incremental Proof

42

V: {x,y}
': x=0 # y=0

T: {"1,"2} with %"1: x’=x+y # y’=y+1

 %"2: x>0 # x’=x-1 # y’=y

&: to prove & (!(x$0)

B1: x=0 # y=0 $ x$0

B2: x$0 # y$0 # x’=x+y # y’=y+1 $ x’$0

x$0 # x>0 # x’=x-1 # y’=y $ x’$0

+

+

x$0 is an invariant and is inductive relative to y$0

first prove & (!(y$0)

 and then prove
 & (!(x$0)
 relative to !#y$0)

+

