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Reference: 
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, 
Springer-Verlag, 1995.

Computational Model

sequences of states

state transition systems
compact first-order representation of all 
sequences of states that can be generated 
by a system

Behaviors:

System description:

Programming language: SPL (simple programming language)

with well-defined semantics in terms of 
transition systems
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Properties of interest
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Invariants: overapproximation of the reachable 
state space

Loop termination: demonstrated by the existence of a 
ranking function
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

bug finding
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States
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V: Vocabulary  -- set of typed variables

expression over V

assertion over V

{x,y: integer, b: boolean}

x+y

x>y

s: state  --  interpretation of all variables

extends to expressions 
and assertions

{x:2,y:3,b:true}

s[x]=2,s[y]=3,s[b]=true

s[x+y]=5

s[x>y]=false

!: set of all states Z ! Z ! {true,false}
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System Description: Transition systems
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 &: < V , ' , T >

Set of typed variables

Initial condition: 
  first-order formula Set of transitions

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x:int, y:int}
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Transitions

8

T: finite set of transitions

"!T:  # $ 2#

s

#
"-successors of s"(s):

.

represented by a transition relation %"(V,V’)

V : values of variables in the current state
V’: values of variables in the next state

Example:

%": x’=x+1 " x’=x+2

"(<x:2>) = {<x:3>,<x:4>}
"(<x:3>) = {<x:4>,<x:5>}
"(<x:4>) = {<x:5>,<x:6>}
"(<x:5>) = {<x:6>,<x:7>}
"(<x:6>) = {<x:7>,<x:8>}

.......

...
...
.
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Transitions
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A transition " is enabled in a state s if: "(s) ! ∅

A transition " is disabled in a state s if: "(s) = ∅

Example:

Transition " with %": (x = 0 " x = 1) # (x’ = x + 1 " x’ = x + 2)

"(<x:0>) = {<x:1>,<x:2>}

"(<x:1>) =  {<x:2>,<x:3>}

"(<x:2>) = ∅
"(<x:3>) = ∅
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Runs

10

Infinite sequence of states

(: s0 s1 s2 s3 s4 .............

is a run of & if

$ Initiality:  s0 % '                          (s0 is an initial state)

$ Consecution: for all i > 0

si+1 is a "-successor of si

for some " ∈ T 

s0       s1    s2     s3  ....

" " " "
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Runs: Example
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V: {x:integer}

': x=0

T: {"1, "2, "3}  with
%"1 : x’=x+1 " x’=x+3
%"2 : x’=x+2 " x’=2x
%"3 : x’=x

{

(1:  0, 1, 2, 3, 4, 5, 6, 7, .............

(2:  0, 0, 0, 0, 0, 0, 0, 0 .............

(3:  0, 2, 4, 8, 16, 19, .............

(4:  0, 1, 1, 3, 3, 5, 5, 7, 7, .............

(5:  0, 1, 2, 3, 5, 6, 8, 9, 18, .............
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Runs: Example
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V: {x:integer}

': x=0

T: {"1, "2, "3}  with
%"1 : (x=0 " x=1) # (x’=x+1 " x’=x+3)
%"2 : x’=x+2 " x’=2x
%"3 : x’=x

{

(1:  0, 1, 2, 3, 4, 5, 6, 7, .............

(2:  0, 0, 0, 0, 0, 0, 0, 0 .............

(3:  0, 2, 4, 8, 16, 32, .............

(4:  0, 1, 1, 3, 3, 5, 5, 7, 7, .............

(5:  0, 1, 2, 3, 5, 6, 8, 9, 18, ............. not a run!

not a run!
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System Description: Summary
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Transition system: &: < V , ' , T > 

Run:           Initiality + Consecution

L(&): all runs of &

(all sequences of states that satisfy 
Initiality and Consecution)

“Behavior of the program”
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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SPL
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Simple programming language with constructs (a.o.):

) assignment

) conditional (if - then - else)

) concatenation

) selection

) while

Static global variable initialization

Statements are labeled
$ define program locations ( equivalence relation on labels)
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SPL

16

Given an SPL program P we can construct the corresponding 

transition system &: < V , ' , T >.

) each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled 
explicitly by a control variable " that ranges over program locations

) V: program variables ∪ {"}

)': program initial condition
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SPL statements
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l1: x := e; l2assignment statement

translates into transition " with transition relation

%":   " = l1 # x’ = e # "’ = l2 # pres(V - {x,"})

conditional statement l1: if c then l2: S1 else l3: S2

translates into transition " with transition relation

%":   " = l1 # ((c # "’= l2) " (¬c # "’= l3)) # pres(V - {"})

y’=y for all 
other variables 

in V
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SPL semantics
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Full semantics of SPL in

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive 
Systems: Safety. Springer-Verlag 1995. pp 18-36.
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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Reachable state space
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state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4 .............

system & is finite-state if the set of &-reachable states is finite

Notation: #  : state space

#&&: &-reachable state space

Example:
V: {b1, b2}
': b1#b2

T: {"} with %": b1’=¬b1#b2’=¬b2

# = {<t,t>,<t,f>,<f,t>,<f,f>}

#&& = {<t,t>,<f,f>}
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Reachable state space
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state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4 .............

system & is finite-state if the set of &-reachable states is finite

Notation: #  : state space

#&&: &-reachable state space

Example:
V: {x:int}
': x=0

T: {"} with %": x=0 # x’=x+1

# = N

#&& = {x:0, x:1}
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Reachable state space
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state s is &-reachable if it appears in some &-run

(: s0 s1 s2 s3 s4 .............

system & is finite-state if the set of &-reachable states is finite

Notation: #  : state space

#&&: &-reachable state space

Example:
V: {x:int}
': 0 # x # M

T: {"1,"2} with

      %"1: odd(x) # x’=3x+1
      %"2: even(x) # x’=x/2

# = N

#&& = ?

a.k.a. Collatz problem
or 3n+1 problem

CS357D Spring 2007Lecture 2, April 5

Reachable state space vs runs
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⊗finite state space

infinite state space

finite # of runs

infinite # of runs

System & may have any combination of
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Invariants
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) a superset of the reachable state space of P

) q is an assertion (first-order formula)
) also written:

An invariant q of program P is 

P ' q all reachable states of P satisfy q

P ( !q all states of all runs of P satisfy q
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Properties of program behaviors
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Temporal logic

models are sequences of states

temporal formula *
represents

the set of sequences of states
for which * is true

First-order logic

models are states

assertion p 
represents 

the set of states 
for which p is true 

<x:3,y:1> ' x > y <s0 s1 s2 s3 ....> ( *
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Specification: underlying assertion language
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Assertion language A:

first-order language over system variables
(+ theories for their domains)

Formulas in A: state formulas (aka assertions)

evaluated over a single state

s ' p     iff     s[p] = true

p holds at s
s satisfies s
s is a p-state

Example: 
       s: <x:4, y:1>

s ' x=0 " y=1
s ' x > y
s ' x = y+3
s ) odd(x)
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Specification: underlying assertion language
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x>0
x>5

#

x2< 100

Assertions represent sets of states
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Specification: underlying assertion language
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assertion p is state-satisfiable if  s ' p for some state s∈#

assertion p is state-valid if s ' p for all states s∈# 
Example: x>y $ x+1 > y

Example: x>0
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State validity and system state validity
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• for a state formula q

' q

q holds in all states
q is state-valid

Example:  ' x=1 $ x>0

Given a system &

• for a state formula q

& ' q

q holds in all &-reachable states
q is &-state-valid

Example: & = <V,',T>

V: {x}
': x=0
T: {"} with %": x’=x+2

& ' x $ 0 # even(x)
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Verification condition
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p # "#  $ q’

Starting from a state that satisfies p, transition " leads to a state 
that satisfies q

{p} " {q}aka “Hoare triple”

"

p q

CS357D Spring 2007Lecture 2, April 5

Verification conditions: examples 
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{x>0} x’=x+1 {x>1}

p # "#  $ q’

{p} " {q}

x>0 # x’=x+1 $ x’>1

substitute x+1 for x’:    x>0 $ (x+1) > 1

{x>0} x’=x+1 {true} x>0 # x’=x+1 $ true

{x$0} x>0 # x’=x-1 {x$0}

{true} x>0 # x’=x-1 {x$0} 
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Proving invariance properties
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Invariant: !" for state formula p

We want to prove & (!"! 

every state of every run of & satisfies p 

Recall: A sequence of states (: s0,s1,s2....  

is a run of &: <V,',T> if 

$ Initiality: s0 ( ' 

$ Consecution: for each j$0, sj+1 is a "-successor of sj,

                   for some "∈T
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Proving invariance properties
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Proving & ( !"

means proving that every state of every sequence of states that 
satisfies 

$ Initiality: s0 ( ' 
$ Consecution: for each j$0, sj+1 is a "-successor of sj,

                   for some "∈T
also satisfies p

Proof by induction:

Base case: ' $ p ensures that every initial state satisfies p

Inductive step: p#%"$p’  for every "∈T
ensures that p is preserved by all transitions
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Verification rule B-INV (basic invariance)

34

For assertion q

B1.      & ' ' $ q

B2.      & ' {q} T {q}

& ( !q

 {q} T {q}   stands for {q} " {q} for all "∈T

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order verification conditions in the underlying assertion 

language.
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

for invariants
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B-INV : example
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V: {x}
': x=0
T: {"1,"2}  with %"1: x’=x+1

                    %"2: x>0 # x’=x-1

&: to prove   &(!(x$0)

B1:  x=0 $ x$0

B2: x$0 # x’=x+1 $ x’$0

x$0 # x>0 # x’=x-1 $ x’$0

+

+

+

B1.      & ' ' $ q

B2.      & ' {q} "1  {q}

B2.      & ' {q} "2  {q}
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B-INV : example
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V: {x,y}
': x=0 # y=0

T: {"1,"2}  with %"1: x’=x+y # y’=y+1

                    %"2: x>0 # x’=x-1

&: to prove   &(!(x$0)

B1:  x=0 # y=0 $ x$0

B2: x$0 # x’=x+y # y’=y+1 $ x’$0

x$0 # x>0 # x’=x-1 $ x’$0

+

%

+

x$0 is an invariant, but it is not inductive
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Verification rule B-INV (basic invariance)
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For assertion q

B1.      & ' ' $ q

B2.      & ' {q} T {q}

& ( !q

if B1 and B2 are (state) valid then q is inductive

every inductive assertion is an invariant

the converse is not true: not every invariant is inductive
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q

*

Non-inductive invariants

39

#

#&&
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q

*

#

#&&

Non-inductive invariants

40

Strategy: strengthen q until it is inductive



CS357D Spring 2007Lecture 2, April 5

Strategy 1: Strengthening
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V: {x,y}
': x=0 # y=0

T: {"1,"2}  with %"1: x’=x+y # y’=y+1

                    %"2: x>0 # x’=x-1 # y’=y

&: to prove   & ( !(x$0)

B1:    x=0 # y=0 $ x$0 # y$0 

B2: x$0 # y$0 # x’=x+y # y’=y+1 $ x’$0 # y’$0

x$0 # x>0 # x’=x-1 # y’=y $ x’$0 # y’$0

+

+

x$0 # y$0 is an invariant and is inductive

strengthen it to 

& ( !(x$0 # y$0)

+
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Strategy 2: Incremental Proof
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V: {x,y}
': x=0 # y=0

T: {"1,"2}  with %"1: x’=x+y # y’=y+1

                    %"2: x>0 # x’=x-1 # y’=y

&: to prove   & ( !(x$0)

B1:    x=0 # y=0 $ x$0 

B2: x$0 # y$0 # x’=x+y # y’=y+1 $ x’$0

x$0 # x>0 # x’=x-1 # y’=y $ x’$0

+

+

x$0 is an invariant and is inductive relative to y$0

first prove & ( !(y$0)  

 and then prove 
   & ( !(x$0) 
 relative to !#y$0)

+


