CS 357D

Lecture 2

Computational Model

Properties of interest

Invariants: overapproximation of the reachable state space

Loop termination: demonstrated by the existence of a ranking function

Computational Model

Behaviors: sequences of states

System description: state transition systems
compact first-order representation of all sequences of states that can be generated by a system

Programming language: SPL (simple programming language)
with well-defined semantics in terms of transition systems

Reference:

Semantics

Java program
C++ program

Java byte code SPL program Petri Net Assembly Code

Transition system

sequences of states

Conditions on program text
Conditions on description
Properties of interest
Semantics

System Description: Transition systems

Set of typed variables
Example: \{x:int, y:int\}

Initial condition:
first-order formula
Example: \(x=0 \land y=0\)

Compact first-order representation of all sequences of states that can be generated by a system

States

V: Vocabulary -- set of typed variables \(\{x,y: \text{integer}, b: \text{boolean}\}\)
expression over V
assertion over V

s: state -- interpretation of all variables \(\{x:2,y:3,b: \text{true}\}\)
extends to expressions and assertions

\(s[x+y]=5\)
\(s[x\cdot y]=\text{false}\)

\(\Sigma: \text{set of all states}\) \(\mathbb{Z} \times \mathbb{Z} \times \{\text{true, false}\}\)

Transitions

\(\mathcal{T}: \text{finite set of transitions}\)

Example:
\(T(x+2) = \{x:3, x:4\}\)
\(T(x+3) = \{x:4, x:5\}\)
\(T(x:4) = \{x:5, x:6\}\)
\(T(x:5) = \{x:6, x:7\}\)
\(T(x:6) = \{x:7, x:8\}\)

represented by a transition relation \(\rho_T(V,V')\)

\(V: \text{values of variables in the current state}\)
\(V': \text{values of variables in the next state}\)

\(\rho_T: x'=x+1 \lor x'=x+2\)
A transition τ is **enabled** in a state s if: $\tau(s) \neq \emptyset$

A transition τ is **disabled** in a state s if: $\tau(s) = \emptyset$

Example:

Transition τ with $\rho_\tau: (x = 0 \lor x = 1) \land (x' = x + 1 \lor x' = x + 2)$

$\tau(x:0) = \{x:1, x:2\}$

$\tau(x:1) = \emptyset$

$\tau(x:2) = \emptyset$

$\tau(x:3) = \emptyset$

Infinite sequence of states

σ: $s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ \ldots$

is a **run** of Φ if

- **Initiality:** $s_0 \models \Theta$ \hspace{1cm} (s_0 is an initial state)
- **Consecutive:** for all $i > 0$

 s_{i+1} is a τ-successor of s_i

 for some $\tau \in \mathcal{T}$

Runs: Example

V: \{x:integer\}

Θ: $x=0$

\mathcal{T}: \{T_1, T_2, T_3\} with

\[
\begin{align*}
\rho_{T_1}: & \quad x' = x + 1 \lor x' = x + 3 \\
\rho_{T_2}: & \quad x' = x + 2 \lor x' = 2x \\
\rho_{T_3}: & \quad x' = x
\end{align*}
\]

σ_1: 0, 1, 2, 3, 4, 5, 6, 7, \ldots

σ_2: 0, 0, 0, 0, 0, 0, 0, \ldots

σ_3: 0, 2, 4, 8, 16, 19, \ldots

σ_4: 0, 1, 1, 3, 3, 5, 5, 7, \ldots

σ_5: 0, 1, 2, 3, 5, 6, 8, 9, 18, \ldots

Runs: Example

V: \{x:integer\}

Θ: $x=0$

\mathcal{T}: \{T_1, T_2, T_3\} with

\[
\begin{align*}
\rho_{T_1}: & \quad (x=0 \lor x=1) \land (x'=x+1 \lor x'=x+3) \\
\rho_{T_2}: & \quad x'=x+2 \lor x'=2x \\
\rho_{T_3}: & \quad x'=x
\end{align*}
\]

σ_1: 0, 1, 2, 3, 4, 5, 6, 7, \ldots

σ_2: 0, 0, 0, 0, 0, 0, 0, \ldots

σ_3: 0, 2, 4, 8, 16, 32, \ldots

σ_4: 0, 1, 1, 3, 3, 5, 5, 7, \ldots

σ_5: 0, 1, 2, 3, 5, 6, 8, 9, 18, \ldots

not a run!
System Description: Summary

Transition system: \(\Phi: < V, \Theta, \mathcal{T} > \)

Run: Initiality + Consecution

\(\mathcal{L}(\Phi) \): all runs of \(\Phi \)
“Behavior of the program”

(all sequences of states that satisfy Initiality and Consecution)

SPL

Simple programming language with constructs (a.o.):

- assignment
- conditional (if - then - else)
- concatenation
- selection
- while

Static global variable initialization

Statements are labeled
- define program locations (equivalence relation on labels)

Semantics

Given an SPL program \(P \) we can construct the corresponding transition system \(\Phi: < V, \Theta, \mathcal{T} > \).

- each program statement corresponds to a transition
 - no sequential structure in transition systems, therefore control is modeled explicitly by a control variable \(\pi \) that ranges over program locations

- \(V \): program variables \(\cup \{ \pi \} \)
- \(\Theta \): program initial condition
SPL statements

assignment statement
\[l_1: x := e; l_2 \]
translates into transition \(\tau \) with transition relation
\[\rho_\tau: \pi_1 \land x' = e \land \pi_2 \land \text{pres}(V - \{x,\pi\}) \]
conditional statement
\[l_1: \text{if } c \text{ then } l_2; S_1 \text{ else } l_3; S_2 \]
translates into transition \(\tau \) with transition relation
\[\rho_\tau: \pi_1 \land ((c \land \pi_1 = l_2) \lor (\neg c \land \pi_1 = l_3)) \land \text{pres}(V - \{\pi\}) \]

SPL semantics

Full semantics of SPL in

Reachable state space

state \(s \) is \(\Phi \)-reachable if it appears in some \(\Phi \)-run
\[\sigma: S_0, S_1, S_2, S_3, S_4 \ldots \]

system \(\Phi \) is finite-state if the set of \(\Phi \)-reachable states is finite

Notation:
\[\Sigma: \text{ state space} \]
\[\Sigma_{\Phi^-}: \Phi \text{-reachable state space} \]

Example:
\[V: \{b_1, b_2\} \]
\[\Theta: b_1 \land b_2 \]
\[\mathcal{J} \subset: \{ \tau \} \text{ with } \rho_\tau: b_1 \land b_2 \land \neg b_2 \]

Properties of interest
conditions on program text
conditions on description
sequences of states
Reachable state space

state s is \(\Phi\)-reachable if it appears in some \(\Phi\)-run

\[\sigma: S_0 \quad S_1 \quad S_2 \quad S_3 \quad S_4 \quad \]

system \(\Phi \) is finite-state if the set of \(\Phi\)-reachable states is finite

Notation: \(\Sigma \) : state space
\(\Sigma_{\Phi} \) : \(\Phi\)-reachable state space

Example:
\(\Sigma = \mathbb{N} \)
\(\nu: \{x: \text{int}\} \)
\(\Theta: x=0 \)
\(\mathcal{F}_\nu: \{ \tau \} \) with \(\rho: x=0 \wedge x'=x+1 \)

Invariants

An invariant \(q \) of program \(P \) is

- a superset of the reachable state space of \(P \)
- \(q \) is an assertion (first-order formula)
- also written:

\[P \models q \quad \text{all reachable states of } P \text{ satisfy } q \]
\[P \models \square q \quad \text{all states of all runs of } P \text{ satisfy } q \]
Properties of program behaviors

<table>
<thead>
<tr>
<th>First-order logic</th>
<th>Temporal logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>models are states</td>
<td>models are sequences of states</td>
</tr>
</tbody>
</table>

Assertion language \mathcal{A}:

- first-order language over system variables (+ theories for their domains)

Formulas in \mathcal{A}: state formulas (aka assertions)

- evaluated over a single state

 $$s \models p \iff s[p] = \text{true}$$

Examples:
- $s: <x:4, y:1>$
- $s \models x=0 \lor y=1$
- $s \models x > y$
- $s \models x = y+3$
- $s \models \text{odd}(x)$

Specification: underlying assertion language

Assertions represent sets of states

- assertion p represents the set of states for which p is true
- temporal formula φ represents the set of sequences of states for which φ is true

Example:
- $\Sigma = \{x > 0, x > 5, x^2 < 100\}$

Specification: underlying assertion language

- assertion p is state-satisfiable if $s \models p$ for some state $s \in \Sigma$
- Example: $x > 0$

- assertion p is state-valid if $s \models p$ for all states $s \in \Sigma$
- Example: $x > y \rightarrow x + 1 > y$
State validity and system state validity

Given a system Φ

- for a state formula p
 $\models p$
 p holds in all states
 p is state-valid

Example: $\models x=1 \rightarrow x>0$

- for a state formula q
 $\Phi \models q$
 q holds in all Φ-reachable states
 q is Φ-state-valid

Example: $\models x=1 \rightarrow x>0$

Verification conditions: examples

$\{p\} \tau \{q\}$

$\{x>0\} x'=x+1 \{x>1\}$
$x>0 \land x'=x+1 \rightarrow x'>1$
substitute $x+1$ for x': $x>0 \rightarrow (x+1) > 1$

$\{x>0\} x'=x+1 \{\text{true}\}$
$x>0 \land x'=x+1 \rightarrow \text{true}$

$\{x\geq 0\} x>0 \land x'=x-1 \{x\geq 0\}$
$\{\text{true}\} x>0 \land x'=x-1 \{\geq 0\}$

Verification condition

Starting from a state that satisfies p, transition τ leads to a state that satisfies q

aka "Hoare triple" $\{p\} \tau \{q\}$

Proving invariance properties

Invariant: $\square p$ for state formula p

We want to prove $\Phi \models \square p$
 every state of every run of Φ satisfies p

Recall: A sequence of states σ: $s_0,s_1,s_2,...$
is a run of Φ: $<V,\Theta,\mathcal{T}>$ if

- Initiality: $s_0 \models \Theta$
- Consecution: for each $j \geq 0$, s_{j+1} is a τ-successor of s_j,
 for some $\tau \in \mathcal{T}$
Proving invariance properties

Proving $\Phi \models \Box p$

means proving that every state of every sequence of states that satisfies

- **Initiality:** $s_0 \models \Theta$
- **Consecution:** for each $j \geq 0$, s_{j+1} is a τ-successor of s_j,
 for some $\tau \in \mathcal{T}$

also satisfies p

Proof by induction:

- **Base case:** $\Theta \rightarrow p$ ensures that every initial state satisfies p
- **Inductive step:** $p \land \rho_{\tau} \rightarrow p'$ for every $\tau \in \mathcal{T}$
 ensures that p is preserved by all transitions

Verification rule B-INV (basic invariance)

For assertion q

\[
\begin{align*}
B1. & \quad \Phi \models \Theta \rightarrow q \\
B2. & \quad \Phi \models \{q\} \mathcal{T} \{q\} \\
\end{align*}
\]

$\{q\} \mathcal{T} \{q\}$ stands for $\{q\} T \{q\}$ for all $\tau \in \mathcal{T}$

B-INV reduces the proof of an invariant to checking the validity of

$\models \mathcal{T} \chi + 1$ first-order verification conditions in the underlying assertion language.

Semantics

<table>
<thead>
<tr>
<th>Java program</th>
<th>C++ program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transition system

- **Properties of interest**
- **for invariants**

B-INV : example

Φ: to prove $\Phi \models \Box(x \geq 0)$

\[\begin{align*}
V: \{x\} \\
\Theta: x=0 \\
\end{align*}\]

$\mathcal{T}: \{T_1, T_2\}$ with $\rho_{T_1}: x'=x+1$

$\rho_{T_2}: x \geq 0 \land x'=x-1$

\[
\begin{align*}
B1: \quad x=0 & \rightarrow x \geq 0 \quad \checkmark \\
B2: \quad x \geq 0 \land x'=x+1 & \rightarrow x \geq 0 \quad \checkmark \\
\end{align*}
\]

\[
\begin{align*}
B1. & \quad \Phi \models \Theta \rightarrow q \\
B2. & \quad \Phi \models \{q\} T_1 \{q\} \\
B2. & \quad \Phi \models \{q\} T_2 \{q\} \\
\end{align*}
\]
B-INV : example

\[\phi: \quad \text{to prove} \quad \phi \models \Box(x \geq 0) \]

\[
\begin{align*}
V & : \{x,y\} \\
\Theta & : x=0 \land y=0 \\
\mathcal{J} & : \{T_1,T_2\} \text{ with } \rho_{T_1}: x'=x+y \land y'=y+1 \\
& \quad \rho_{T_2}: x>0 \land x'=x-1
\end{align*}
\]

- **B1**: \(x=0 \land y=0 \rightarrow x \geq 0 \) \(\checkmark \)
- **B2**: \(x \geq 0 \land x'=x+y \land y'=y+1 \rightarrow x' \geq 0 \) \(\times \)
 \[
 x \geq 0 \land x>0 \land x'=x-1 \rightarrow x' \geq 0 \quad \checkmark
 \]

\(x \geq 0 \) is an invariant, but it is not **inductive**

Verification rule B-INV (basic invariance)

For assertion \(q \)

- B1. \(\phi \models \Theta \rightarrow q \)
- B2. \(\phi \models \{q\} \mathcal{J} \{q\} \)

\(\phi \models \Box q \)

if B1 and B2 are (state) valid then \(q \) is inductive

every inductive assertion is an invariant

the converse is not true: not every invariant is inductive

Non-inductive invariants

Strategy: strengthen \(q \) until it is inductive
Strategy 1: Strengthening

Let: \(\Phi: \{x, y\} \)
- \(\Theta: x = 0 \land y = 0 \)
- \(\mathcal{E}: \{T_1, T_2\} \) with \(\rho_{T_1}: x' = x + y \land y' = y + 1 \)
- \(\rho_{T_2}: x > 0 \land x' = x - 1 \land y' = y \)

B1: \(x = 0 \land y = 0 \rightarrow x \geq 0 \land y \geq 0 \)
B2: \(x \geq 0 \land y \geq 0 \land x' = x + y \land y' = y + 1 \rightarrow x' \geq 0 \land y' \geq 0 \)
\(x \geq 0 \land y \geq 0 \) is an invariant and is inductive

Strategy 2: Incremental Proof

Let: \(\Phi: \{x, y\} \)
- \(\Theta: x = 0 \land y = 0 \)
- \(\mathcal{E}: \{T_1, T_2\} \) with \(\rho_{T_1}: x' = x + y \land y' = y + 1 \)
- \(\rho_{T_2}: x > 0 \land x' = x - 1 \land y' = y \)

B1: \(x = 0 \land y = 0 \rightarrow x \geq 0 \)
B2: \(x \geq 0 \land y \geq 0 \land x' = x + y \land y' = y + 1 \rightarrow x' \geq 0 \)
\(x \geq 0 \) is an invariant and is inductive relative to \(y \geq 0 \)