CS 357 D

Lecture 2

Computational Model

http://cs357d.stanford.edu/

April 5, 2007

Lecture 2, April 5 | CS357D Spring 2007

Computational Model

Behaviors:

System description:

Programming language:

Reference:

sequences of states

state transition systems

compact first-order representation of all

sequences of states that can be generated
by a system

SPL (simple programming language)

with well-defined semantics in terms of
transition systems

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,

Springer-Verlag, 1995.

Lecture 2, April 5

CS357D Spring 2007

Properties of interest

overapproximation of the reachable
state space

Invariants:

demonstrated by the existence of a
ranking function

Loop termination:

Lecture 2, April 5 3 CS357D Spring 2007

Semantics
???? 7y
Java
SPL Petri Assembly -
byte brogram Net Code <:I conditions on program fext
code
? s 2 ! o2

Transition system

Y

sequences of states

<:I conditions on description

Properties of interest

Lecture 2, April 5

CS357D Spring 2007

Semantics

; 2222 e ¢ oug finding ¢

A\ A\

Java of
SPL Petri Assembly -
[Ez’;“z] E”Ogram] [Net] [Code] <:I conditions on program text
?

Transition system <:I conditions on description
—dedLC ctive verification

sequences of states

m

<:I Properties of interest
odel checking

Lecture 2, April 5 5 CS357D Spring 2007

States

V: Vocabulary -- set of typed variables
expression over V

assertion over V

s: state -- interpretation of all variables

extends to expressions
and assertions

2: set of all states

{x,y: integer, b: boolean}
X+Yy

x>y

{x:2,y:3,b:true}
s[x]=2,s[yl=3,s[b]=true
s[x+y]=5

s[x>yl=false

Z X Z X {true,false}

Lecture 2, April 5 6

CS357D Spring 2007

System Description: Transition systems

Set of typed variables
Example: {x:int, y:int}

b:<cV,0,T>

N\

Set of transitions

Initial condition:
first-order formula

Example: x=0 A y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Lecture 2, April 5 7

CS357D Spring 2007

Transitions

o : finite set of transitions

> - 22

3 /_'OT(S): T-successors of s

S

TeJ:

represented by a transition relation p-(V,V’)

V : values of variables in the current state

V’: values of variables in the next state

Example:

T(<x:2>) = {<x:3>,¢x:4>}
T(<x:3>) = {<x:4>,<x:55}
T(<x:4>) = §<x:55,<x:6>}
T(<x:55) = {<x:6>,¢<x:7>}
T(<x:65) = §<x:7>,<x:8>}

pr: X'=x+1 V x'=x+2

Lecture 2, April 5 8

CS357D Spring 2007

Transitions

A transition T is enabled in a state s if:

A transition T is disabled in a state s if:

Example:

T(s) + O

T(S) =

Transition Twith pr: X =0 Vx=1) AKX =x+1V X =x+ 2)

T(<x:05) = §<x:1>,<x:2>}

T(<x:1>) = §<x:2>,<x:3>}

T(<x:2>) = &
T(«x:3>) = I

Lecture 2, April 5

9 CS357D Spring 2007

Runs

Infinite sequence of states

O: So S1 S2 S3 54 eeeeeeennne.

is a run of @ if
« Initiality: so F O
@« Consecution: for all i >0

Si;1 IS @ T-successor of s;

for some T € J

(so is an initial state)

T T T T

So S1 S22 S3 ...

Lecture 2, April 5 10

CS357D Spring 2007

Runs: Example

V: {x:integer}
O: x=0
o {1, T2, T3} with { Pr2

Pr3

o: 0,1,2,3,4,5,6,7, ...

o2 0,0,0,00,0,0,0 ..
03 0, 2, 4, 8,16, 19, ...

os 0,1,1,3,3,55,77, ..

os: 0,1,2, 35,6, 8,09, 18,

Pn :

x'=x+1 V x'=x+3
: x'=x+2 V x'=2x
x'=x

Lecture 2, April 5

I CS357D Spring 2007

Runs: Example

V: {x:integer}

O©: x=0 pri | (x=0 v x=1)

A (X'=x+1 V x'=x+3)

o : {11, T2, T3} with { Prz 1 X'=X+2 V X'=2X

Pr3 1 X'=x

o: 0, 1,2, 3,|4,5, 6,7

02 0,0,0,00,0,0,0 ...
o3 0, 2, 4, 8,16, 32, ...

04 0,1,1,3,3,5 5 7,7, e
os: 0, 1,|2, 3,|5, 6, 8, 9,18, ...

not a run!

not a run!

Lecture 2, April 5 12

CS357D Spring 2007

System Description: Summary

Semantics

Transition system: ®: <V , O, J >

Run: Initiality + Consecution

???? ????
Java %
SPL Petri Assembly -
EZ;“Z i Net Code <:I conditions on program text

?
Of(cb); all runs of ® Transition system <:I conditions on description
(all sequences of states that satisfy v
Initiality and Consecution)
sequences of states <:I Properties of interest
Lecture 2, April 5 13 CS357D Spring 2007 Lecture 2, April 5 14 CS357D Spring 2007
SPL SPL

Simple programming language with constructs (a.0.):

» assignment

» conditional (if - then - else)
» concatenation

» selection

» while

Static global variable initialization

Statements are labeled
e« define program locations (equivalence relation on labels)

Given an SPL program P we can construct the corresponding
transition system ®: <V , O , J >.

» each program statement corresponds to a transition

no sequential structure in transition systems, therefore control is modeled
explicitly by a control variable m that ranges over program locations

» V: program variables U {m}

» O: program initial condition

Lecture 2, April 5 15 CS357D Spring 2007

Lecture 2, April 5 16 CS357D Spring 2007

SPL statements

assignment statement

conditional statement

translates into transition T with transition relation

li: x :=e; |2 y’=y for all
other variables

inV

p: m=hLAXx =enn =lzA pres(V - {x,m})

li: if c then l2: S; else I3: Sz

translates into transition T with transition relation

pr: M=l A(lc Am'=12) V(¢ A 1'=13)) A pres(V - {n})

Lecture 2, April 5

CS357D Spring 2007

SPL semantics

Full semantics of SPL in

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive
Systems: Safety. Springer-Verlag 1995. pp 18-36.

Lecture 2, April 5

????

????

Assembly ")
[Code] <:I conditions on program text

K
o
.
K
o

<:I Properties of interest

Lecture 2, April 5

CS357D Spring 2007

CS357D Spring 2007
Semantics Reachable state space

state s is ®-reachable if it appears in some ®-run

0. So S1 S2 S3S4

system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
20-: ®-reachable state space
Example:

3 = {«t, > <t <F 1> <F, 5}
V: {b1, bz}
o: b1/\b2

So. = {<t,t><f,F>}
J {T} with P b1l=-|b1/\b21=-|b2

Lecture 2, April 5

20

CS357D Spring 2007

Reachable state space

state s is ®-reachable if it appears in some ®-run

O: S0 S1 S2 S3 54 wevevvennnenn
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
20-: ®-reachable state space

Example: SN
V: {x:int}
O: x=0 o = {x:0, x:1}

= {1} with pr: x=0 A x'=x+1

Lecture 2, April 5 21 CS357D Spring 2007

Reachable state space

state s is ®-reachable if it appears in some ®-run

O: SO S1 S2 S3 54 wevevennnnenn
system ® is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
20-: ®-reachable state space

Example: S =N
V: {x:int}

- =7
O:0<¢x<M 2o
J {T1,T2} with

a.k.a. Collatz problem
or 3n+l problem

pr1: odd(x) A x'=3x+1
pr2: even(x) A X'=x/2

Lecture 2, April 5 22 CS357D Spring 2007

Reachable state space vs runs

System ® may have any combination of

finite state space finite # of runs

infinite state space infinite # of runs

Invariants

Lecture 2, April 5 23 CS357D Spring 2007

An invariant q of program P is

» a superset of the reachable state space of P

» q is an assertion (first-order formula)
» also written:

PiFq all reachable states of P satisfy q
P = Ogq all states of all runs of P satisfy q
Lecture 2, April 5 24 CS357D Spring 2007

Properties of program behaviors

Specification: underlying assertion language

First-order logic Temporal logic

models are states models are sequences of states

X3y IEX>Y <S0 S1 52 S3 .> F

temporal formula ¢
represents
the set of sequences of states
for which @ is true

assertion p
represents
the set of states
for which p is true

Assertion language (:

first-order language over system variables
(+ theories for their domains)

Formulas in (: state formulas (aka assertions)

evaluated over a single state Example:
S: <X:4, y:1>
S IF iff s[p] = true
P (Pl s IE x=0 Vv y=1
p holds at s SIEX>y
s satisfies s SI= X =y+3
s is a p-state s 1= odd(x)

Lecture 2, April 5 25 CS357D Spring 2007

Lecture 2, April 5 26 CS357D Spring 2007

Specification: underlying assertion language

Specification: underlying assertion language

Assertions represent sets of states

O

assertion p is state-satisfiable if s I= p for some state seZ
Example: x>0

assertion p is state-valid s I= p for all states s€2
Example: x>y = x+l >y

Lecture 2, April 5 27 CS357D Spring 2007

Lecture 2, April 5 28 CS357D Spring 2007

State validity and system

state validity

o for a state formula q
I= q

q holds in all states
q is state-valid

Example: = x=1 = x>0

Given a system @

o for a state formula q
®I=q

q holds in all ®-reachable states
q is ®-state-valid

Example: ® = <V,0,J >

V: {x}
O: x=0
o : {1} with pr: x'=x+2

® = x 20 A even(x)

Lecture 2, April 5

29 CS357D Spring 2007

Verification condition

PAPr 2 Q

Starting from a state that satisfies p, transition T leads fo a state
that satisfies q

aka “Hoare triple”

{p} T {q}

T

>

()

30

Lecture 2, April 5 CS357D Spring 2007

Verification conditions: examples

{x>0} x'=x+1 {x>1}

{x>0} x'=x+1 {true}

{x20} x>0 A x'=x-1 {x20}
{true} x>0 A x'=x-1 {x20}

substitute x+1 for x’:

PAPr 2 Q
{p} T {q}

x>0 A x'=x+1 = x'51

x>0 = (x+1) > 1

x>0 A X'=x+1 = true

Lecture 2, April 5

3l CS357D Spring 2007

Proving invariance properties

Invariant: Op for state formula p

We want to prove ® =0p
every state of every run of ® satisfies p
Recall: A sequence of states O: so,s1,52....
is a run of ®: <v,0,J > if
& Initiality: so = O

& Consecution: for each j20, sj.1 is a T-successor of s,
for some Te<

Lecture 2, April 5 32

CS357D Spring 2007

Proving invariance properties

Proving @ = Op

means proving that every state of every sequence of states that
satisfies
e« Initiality: so = O

& Consecution: for each j20, sj.1 is a T-successor of s,

for some TeJ”
also satisfies p

Proof by induction:

Base case: © = p ensures that every initial state satisfies p

Inductive step: pAp-—p’ for every Te<]

ensures that p is preserved by all transitions

Verification rule B-INV (basic invariance)

For assertion q

Bl. PO —q
B2. o = {q} J {q}

® = Oq

{q} J {q} stands for {q} T {q} for all TEJ"

B-INV reduces the proof of an invariant o checking the validity of

| J| + 1 first-order verification conditions in the underlying assertion

language.
Lecture 2, April 5 33 CS357D Spring 2007 Lecture 2, April 5 34 CS357D Spring 2007
Semantics B-INV : example
v 2222 2222 § V: {x}
Java SPL Petri Assembly) ©: x=0
oy e? . 1l
Ezsz program Net Code <:I conditions on program fext J {riTe} with pr: x'=x+1
- Pra: x>0 A X'=x-1
? Q ﬁ £ 2
Bl: x=0 — x20 v Bl. dI=0 —q
Transition system <:I
B2: x20 A X'=x+l & x20 ¥ B2. @ {q T {q}
x20 A x>0 A X'=x-1 = x'20 v B2. o 1= {q} T2 {q}
sequences of states <:I Properties of interest
for invariants
Lecture 2, April 5 35 CS357D Spring 2007 Lecture 2, April 5 36

CS357D Spring 2007

B-INV : example

d: to prove ®=[0(x20)

Vi Xy}
O: x=0 A y=0

J {1, T} with pr: X'=x+y A y'=y+l
pr2: x>0 A x'=x-1

Bl: x=0 A y=0 = x20 v
B2: x20 A X'=x+y A y'=zy+l = x20 X

x20 A x>0 A X'=x-1 = x>0 v

%20 is an invariant, but it is not inductive

Verification rule B-INV (basic invariance)

Lecture 2, April 5 37

CS357D Spring 2007

For assertion q

Bl. PO —q
B2. o = {q} J {q}

® = Ogq

if Bl and B2 are (state) valid then q is inductive
every inductive assertion is an invariant

the converse is not frue: not every invariant is inductive

Lecture 2, April 5 38 CS357D Spring 2007

Non-inductive invariants

Non-inductive invariants

Lecture 2, April 5 39

CS357D Spring 2007

Strategy: strengthen q until it is inductive

Lecture 2, April 5 40 CS357D Spring 2007

Strategy 1: Strengthening

®: to prove
Vi {x,y}
O: x=0 A y=0

o 4T, T2} with pr: X'=x+y A y'=y+l o =

pra: x>0 A X'=x-1 A y'=y
Bl: x=0 A y=0 = x20 A y20

B2: x20 A y20 A X'=x+y A y'=y+l = x>0 A y'20

x20 A x>0 A X'=x-1 A y'zy = x>0 A y'20

x20 A y20 is an invariant and is inductive

® = O(x20)

strengthen it to

O(x20 A y20)

Strategy 2: Incremental Proof

Lecture 2, April 5 41

CS357D Spring 2007

® = O(x20)
first prove ® = [(y20)

®: to prove
V: {x,y}
O: x=0 A y=0

Y ‘ ‘ and then prove
T 4T, T2d with pr: X'=x4y A y'=y+l p

¢ = O(x20)
relative to C(y20)

pra: X>0 A X'=x-1 A y'=y
Bl: x=0 A y=0 = x20 v
B2: x20 A y20 A X'=x+y A y'=y+l = x>0

x20 A x>0 A X'=x-1 A y'zy = x20

x20 is an invariant and is inductive relative to y>0

Lecture 2, April 5 2 CS357D Spring 2007

