		Computational Model
	CS 357 D	Behaviors: sequences of states
	Lecture 3 Proving invariants	System description: state transition systems compact first-order representation of all sequences of states that can be generated by a system
		Programming language: SPL (simple programming language) with well-defined semantics in terms of transition systems
<u>ht</u>	t <u>p://cs357d.stanford.edu</u> / April 10, 2007	Reference: Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.
Lecture 3, April 10	CS357D Spring 200	Lecture 3, April 10 2 CS357D Spring 2007
Properties of interest Invariants: Loop termination:	overapproximation of the reachable state space demonstrated by the existence of a ranking function	Semantics Java program ; ???? Java byte code program Petri Net Code
Lecture 3, April 10	3 CS357D Spring 200	Lecture 3, April 10 4 CS357D Spring 2007


```
 \begin{split} \mathcal{T}: \left\{ \begin{array}{l} \tau_{1} \,,\, \tau_{2} \,,\, \tau_{3} \,,\, \tau_{4} \end{array} \right\} \text{ with } \\ \rho_{\tau 1}: \,\pi \,=\, l_{1} \,\wedge\, (\,(\,\, x \, > \, 0 \,\wedge\, \pi' \, = \, l_{2} \,\,) \,\vee\, (\,\, x \, \leq \, 0 \,\wedge\, \pi' \, = \, l_{4} \,\,) \,\,) \,\wedge\, \text{pres}(\,\left\{ \begin{array}{l} x \,,\, y \,\right\} \,\,) \\ \rho_{\tau 2}: \,\pi \,=\, l_{2} \,\wedge\, \pi' \,=\, l_{3} \,\wedge\, x^{\,\, *} \,=\, x \,-\, 1 \,\wedge\, y' \,=\, y \\ \rho_{\tau 3}: \,\pi \,=\, l_{3} \,\wedge\, \pi' \,=\, l_{1} \,\wedge\, y' \,=\, y \,+\, x \,\wedge\, x' \,=\, x \\ \rho_{\tau 4}: \,\text{pres}(\,\left\{ \begin{array}{l} x \,,\, y \,,\, \pi \,\right\} \,\,) \end{split} \right) \end{split}
```

p is preserved by every transition τ
 (inductive step)

$p \ \land \ \rho_\tau \ \textbf{\rightarrow} \ p'$	
---	--

$\tau_1: x \leq N \land \dots \land x$	$' = \times \land \dots \rightarrow$	$x' \leq N$	valid
$\tau_2:x \leq N \ \land \ \ \land \ x$	$' = x - 1 \wedge \dots$	$\rightarrow x' \leq N$	valid
$\tau_3:x \leq N \land \dots \land x$	$a' = \mathbf{x} \land \dots \rightarrow$	$x' \leq N$	valid
$\tau_4: x \leq N \land \dots \land x$	$a' = \mathbf{x} \land \dots \rightarrow$	$x' \leq N$	valid
Lecture 3, April 10	29		CS357D Spring 2007

Verification rule B-INV (basic invariance)

For assertion p B1. $\Theta \rightarrow p$ B2. $p \land \rho_{\tau} \rightarrow p'$ for all τ in \mathcal{T} $\Box p$ (p is an invariant of Φ)

B-INV reduces the proof of an invariant to checking the validity of $|\mathcal{J}| + 1$ first-order formulas (verification conditions in the underlying assertion language).

Proving invariance properties deductively: example

```
local x,y: integer where x = N \land y=0 \land N > 0
l<sub>1</sub>: while x > 0 do [
l<sub>2</sub>: x := x - 1 ;
l<sub>3</sub>: y := y + x ;
]
l<sub>4</sub>:
```

 $x \leq N$

is an invariant for all values of N > 0

Proof: (validity of 5 first-order formulas)

Proving invariance properties deductively: example

<pre>local x,y: integer where l1: while x > 0 do [</pre>	x = N ∧ y=0 ∧ N	> 0	invo	ariant to prove: x ≥ 0
 p holds at the be (base case) 	ginning of eve	ry run:		⊖ → p
$\frac{x = N \land y = 0 \land N}{\Theta}$	$> 0 \land \pi = l_1$	→ <u>×</u>	≥ C P) valid
ure 3, April 10	32			CS357D Spring 2007

Manufacturing system example: description

- > Automated manufacturing system with
 - + 4 machines M_1 M_4 , whose availability is modeled by x_5 , x_6 , x_{17} , x_{18}
 - + 2 robots R_1 and R_2 , whose availability is modeled by x_{12} and x_{13}
 - \blacktriangleright 2 buffers, modeled by x_{10} and x_{15}
 - ${\boldsymbol{\flat}}$ delivery area, modeled by x_{25}
- ▶ Raw material is introduced in x₁, whose initial marking is parametric (it may start with any number of tokens)
- ▶ Raw material passes through two assembly lines, where it is processed by the machines and transported by the robots, and ends up in the delivery area
- ▶ Initial marking:

```
 \begin{array}{l} x_1 = p \\ x_2 = x_4 = x_7 = x_{12} = x_{13} = x_{16} = x_{19} = x_{24} = 1 \\ x_{10} = x_{15} = 3 \\ \mbox{ all other places: } x_i = 0 \end{array}
```

Petri net: manufacturing system example

Model of a manufacturing system with 4 machines, 2 robots, 2 buffers

Manufacturing system example: background

Original description:

MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for synthesis of petri net models for manufacturing systems. IEEE Transactions on Robotics and Automation, 8(3):350–361, June 1992.

Subsequently analyzed for possibility of deadlocks:

Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and mathematics p programming. IEEE Transactions on Robotics and Automation, 13(6):793–804, December 1997.

Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems by compilation into Presburger Arithmetic. In Concur'97, LNCS 1243, Springer-Verlag, pp 213-227, 1997.

B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real arithmetic. In Concur'99, LNCS 1664, Springer-Verlag, 1999.

CS357D Spring 2007

Manufacturing system example: our analysis

Described in:

S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004.

Some results:

- ▶ generated 1900 invariants
- \blacktriangleright invariants imply absence of deadlock for initial values $1 \le x_1 \le 8$
- invariants imply that the system is bounded
- invariants provide insight in the system structure, for example:

$x_8 + x_{12} + x_{20} = 1$ $x_9 + x_{13} + x_{21} + x_{23} + x$	 R₁ is used to tran and from M₃ to t R₂ has the same line, but is also re 	R_1 and R_2 are not symmetric: sport material from M_1 to M_3 he packaging area tasks in the other assembly esponsible to deliver the from the two assembly lines ta (x_{25}).	0 ≤ x ≤ N 0 ≤ y ≤ N
Lecture 3, April 10	57	CS357D Spring 2007	Lecture 3, April 10

Invariants: exercise

58

CS357D Spring 2007

invariants ?

$0 \le x \le N$	$(\pi = l_4) \rightarrow (y = N - 1)$	$y \le x + (N - 1)$
$0 \le y \le N - 1$	$(\pi = I_4) \rightarrow (x = 0)$	$(\pi = l_3) \rightarrow x + y = 1$