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Lecture 3

Proving invariants

http://cs357d.stanford.edu/

April 10, 2007

Computational Model

Behaviors:  sequences of states

System description:  stafe transition systems

compact first-order representation of all
sequences of states that can be generated
by a system

Programming language: ~ SPL (simple programming language)

with well-defined semantics in terms of
transition systems

Reference:

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.
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Properties of interest Semantics

overapproximation of the reachable
state space

Invariants:

demonstrated by the existence of a
ranking function

Loop termination:
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System Description: Transition systems

Set of typed variables
Example: {x:int, y:int}

b:<V,0,T>

Initial condition: J \

first-order formula Set of transitions

Example: x=0 A y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Runs

Infinite sequence of states

O: So S1 S2 S3 54 eeeeeeennne.

is a run of @ if

« Initiality: so F O (so is an initial state)
e Consecution: for all i >0
T T T T

S1 S2 S3 ..

Si;1 IS @ T-successor of s;

for some T € J
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Semantics SPL: Simple Programming Language
| |
Given an SPL program P we can construct the corresponding
???? 2222 . -
LI 4 transition system ®: <V , O , J >.
Java
SPL Petri Assembly -
[ by;‘e brogram Net Code <:l conditions on program fext -
code » each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled
? explicitly by a control variable m that ranges over program locations
Transition system << l,:l conditions on description .
4 P » V: program variables U {m}
v b ©: program initial condition
sequences of states <:I Properties of interest
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SPL example

Semantics

local x,y: integer where x=N A y=0
l;: while x > 0 do [

ls xi=x-1;

l3zy:=y+x;

]

I/.I

d: <V, 0, T> with

Vo {xint, yint, m{l, L2, 5, s }}

J:{Tl,Tz,T3,T4}Wifh

@:X:NAY:O/\T[:Il

pu:m=LA((x>0Am =) Vv(xcO0Am=1))Apres({x,y})
pre:m=Am =l3AXx ' =x-1AY =y
ps:m=lAnm =AYy =y +x A X =X

prs:pres({x,y,m})
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§ 2222 2222 §

Java Assembly )

byte Code <:I conditions on program text

code

? =~ 2
<:I conditions on description
<:I Properties of interest
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Reachable state space

Reachable state space

state s is ®-reachable if it appears in some ®-run

O: S0 S1 S2 S3 54 wevevvennnenn

system & is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
20-: ®-reachable state space

local x: integer where x > 0
l;: while x = 1 do [
l2: if odd(x) then
l3: x :=3x +1;
else
s x:=x/2;
]

ls:

size of the reachable state space not known in general
Example runs:

3,10, 5,16, 8, 4, 2,1

7, 22,11, 34,17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
9, 28,14, 7, ...

19, 58, 29, 88, 44, 22, ...
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Reachable state space vs runs

System ® may have any combination of

finite state space finite # of runs

infinite state space infinite # of runs
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Invariants

An invariant q of program P:

» is a superset of the reachable state space of P

» q is an assertion (first-order formula)

» also written:

Pl=q all reachable states of P satisfy q

P = Ogq all states of all runs of P satisfy q
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Invariants: examples

absence of array out-of-bounds accesses:

A: array[1..N] of integer
i : integer

....... (m=A£)—>1<i<N

absence of division by zero

X,y,z: integer

(n:l)—'z:#o
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Invariants: example

local x,y: integer where x=2 A y=0
l;: while x > 0 do [

lz xi=x-1;

l3zy:=y+x;

]

I/.I

reachable state space:

{(2,00),(2,0,12),(1,0,13),(L, L, L), (L, L12),(0,L1z),(0, L, 1L),(0, 1 1s)}

some invariants:

0

I\

x<2 (m=l)—>(y=1) y<x+1

0

IA

y <1 (m=l)—=(x=0) (M=) x+y=1
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Proving invariants by model checking: example

To prove ¥y < x + 2:
1. Construct the reachable state space

O:x:Z/\y:O/\ﬂ:ll

J:{T, T2, T3, T4 } with

pu:m=LA((x>0Am =l)v(xc0Aan=ls))Aapres({x,y})
pre:m=Aanm =AXx '=x-1AY =y
ps:m=AT =AYy =y+xAx =x

pra:pres({x,y,m})

Proving invariants by model checking: example

To prove ¥y < x + 2:

2. Check that all reachable states satisfy y < x + 2
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Semantics Proving invariants by model checking: example
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Trying to prove x # y s invariant:

O:x:Z/\y:O/\ﬂ:ll
counter example trace

J:{T, T2, T3, T4 } with

pu:m=LA((x>0Am=l)v(xc0Aan=ls))Aapres({x,y})
pre:m=Aanm =AX '=x-1AY =y
ps:m=LAT =AYy =y+xAx =x

pra:pres({x,y,m})
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Invariants: example

local x,y: intfeger where x = N A y=0 A N >0

l;: while x > 0 do [
la: x:=x-1;

l3zy:=y+x;
]
|1.1
invariants ?
o) w00 @ v
0Ly (m=l)—>(x=0) (m=b)—-x+y=1

replace by N or N-17?

Invariants: example

local x,y: intfeger where x = N A y=0 A N >0
l;: while x > 0 do [

laz x:=x-1;

l3zy:=y+x;

]

lz.:

invariants ?
0<xX<N (m=l)—=(y=N-1) y<x+(N-1)
0Ly<N-1 (m=l)—>(x=0) (m=b)—-x+y=1

How do we check?

Model checking forN=1,N=2,N=3,N=4, N =75,
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Semantics Proving invariance properties deductively

vy 2?2 Ny
Java
SPL Petri Assembly -
[ Ezsz i Net Code <:I conditions on program text
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deductive verification

conditions on description

sequences of states

<=

model checking

Properties of interest
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To prove that assertion p is an invariant of system ®

( every state of every run of ® satisfies p )

it is sufficient to prove that ( proof by induction on the run)

& p holds at the beginning of every run ( base case )

e p is preserved by every transition T (inductive step )
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Proving invariance properties deductively : initiation

These conditions can be expressed in first-order logic:
( base case )

& p holds at the beginning of every run

From the definition of a a run:

a sequence of states S0 S1 Sz..... is a run if

Initiality: so = © (all initial states must satisfy © )

sufficient condition for p to hold at all initial states:

O-p ( O implies p )

Proving invariance properties deductively : consecution
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These conditions can be expressed in first-order logic:
e p is preserved by every transition T (inductive step )

From the definition of a a run:

a sequence of states So S1 Sz..... is a run if

Consecution: for each j20, sju1 is a T-successor of s;,
for some Te

induction step: assume p holds on's; -- to prove: p holds on sj.: after taking T

in first-order logic: PAPr—p
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Proving invariance properties deductively: example

invariant to prove:
local x,y: integer where x = N A y=0 A N> 0 o pro
l: while x > 0 do [ x <N
lo: X i=x-1; -
l3:y:=y +x;
1
|4:
« p holds at the beginning of every run: ©O-p

( base case )

X=NAYy=0AN>OAWM=L — x=N valid

0 P

Proving invariance properties deductively: example

Lecture 3, April 10 27 CS357D Spring 2007

invariant to prove:
local x,y: integer where x = N A y=0 A N> O P

l: while x > 0 do [ x < N
lo: xi=x-1; -
l3:y:=y +x;

]

|4:

e p is preserved by every transition T
(inductive step )

PAPr—=p
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Proving invariance properties deductively: example

J:{T, T2, T3, T4} with

pu:m=LA((x>0Am =) Vv(x<O0AT=))Apres({x,y})
pre:m=leAm =3AX ' =x-1AY =y
pz:m=LAT =AY =y+xAX =X

prs i pres({x,y,m})

e p is preserved by every transition T PAPr—p

(inductive step )

Proving invariance properties deductively: example

local x,y: integer where x = N A y=0 A N> O

Proof: (validity of 5 first-order formulas)

x <N
l: while x > 0 do [
la: x :=x-1; . . .
3y =y + X ; is an invariant for all
] values of N > 0

X=NAYy=0AN>OATM=L — x=N
Ti:X SNA e AX =2 XA e - x' 2N valid T X SNA . AX XA - xX'<N
T2: X SN A e AX =X =1A - x'<N valid T2t X SNA e AX =X =LA - x'=N
T3:X SN A e AX =X A o - x' <N valid T3 X SNA . AKX ZXA e - X' =N
T4: X SN A e AX =X A - x' <N valid To: X SN A e AX XA - X' <N
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Verification rule B-INV (basic invariance) Proving invariance properties deductively: example
For assertion p local x,y: intfeger where x = N A y=0 A N> 0 invariant fo prove:
l: while x > 0 do [ x>0
Bl. O-p :z:::;i
B2. pApr—p foralTind Lt ]
Op ( p is an invariant of @ )
« p holds at the beginning of every run: ©O-p
B-INV reduces the proof of an invariant to checking the validity of ( base case )

| J1 + 1 first-order formulas ( verification conditions in the underlying
assertion language ).
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Xx=NAYy=0AN>OATWM=L = x20

0 p

valid
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Proving invariance properties deductively: example

J:{T, T2, T3, T4} with

pu:m=LA((x>0Am =) Vv(x<O0AT=))Apres({x,y})
pre:m=leAm =3AX ' =x-1AY =y
pz:m=LAT =AY =y+xAX =X

prs i pres({x,y,m})

e p is preserved by every transition T PAPr—p
(inductive step )
TI:X 20 A .. AX =2ZXA . - x'20 valid
T2:X 20 A e AX =2X=1A .. - x" >0 not valid
T3:X 20 A oo AX ZXA . - x'20 valid
Te: X 20 A e AX ZXA . - x'20 valid
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what is the problem?

To prove x = 0 : (forN=2)

(Model checking) check that all reachable states satisfy x = 0

3
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what is the problem?

Toprove x = 0:  (deductively for N=27?)
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what is the problem?

T2 :%X = 0O|A ......... AX =X=1A . -+ x>0

inductive hypothesis is too weak

it is not preserved by all transitions

X = 0 is an invariant, but it is not inductive

it cannot be proven deductively directly
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Solution: strengthen the inductive hypothesis

identify the problem states

(0,0,12),(0,1,12), v

in general: (0,vy,lz) for any value of y

remove them by strengthening the inductive hypothesis

x20 Al((m=1l2)—=>x>0)

what is the problem?
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Transition T2 is preserved

T x=20A((m=L)=2x>0)Am=LAax=x-1Am=13
- xX20A((m"=L)—=x">0)

How about the initial condition?

Xx20 A ((m=lL)—>2 x>0
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« p holds at the beginning of every run: O-p

( base case )

X=NAYy=0AN>OATM=l = x2Z0A({(m=12)—x>0)

C p

still valid
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How about the other transitions?

J:{T, T2, T3, T4 } with

'%'>Pn:n=l1/\((><>(XSOAﬂ'=lz.))/\Pres({’<'Y})
pre:m=leAam =13 A X AY' =y

pz:m=L AT =LAy =y+xAX =X
pre s pres({x,y,m})

& p is preserved by every transition T PAPr—p
(inductive step )
Ti:x20A((m=12) =2 x>0) A
(x>0AT =12) A o AKX ZXA o valid
-
xX20A((m=1)—>x>0)
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Summary of proof of x > 0

To prove x 2 0 :

Application of B-INV did not work : x 2 0 was too weak

Strengthen into

X220 A (( m=1 ) - X > O) (implies the invariant we want to prove)

Application of B-INV on stronger invariant works:
all verification conditions are valid

Lecture 3, April 10 2 CS357D Spring 2007

Verification rule B-INV (basic invariance)

For assertion p

Bl. O-p
B2. pApr—p foralTind
Op ( p is an invariant of @ )

B-INV reduces the proof of an invariant to checking the validity of

| J1 + 1 first-order formulas ( verification conditions in the underlying
assertion language ).

Verification rule G-INV (general invariance)

For assertions @, p
I1. @ —=p
I2. ©—-o
I3. @ Apr— @ foralTind
Op (pis an invariant of ® )
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G-INV reduces the proof of an invariant p to finding an inductive
assertion @ that strengthens p and to checking the validity of

| J| + 2 first-order formulas ( verification conditions in the underlying
assertion language ).
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Semantics

Semantics

+ . A b B
Pefri ssembly <:| conditions on program fext

???? 7?7y
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Transition system

sequences of states
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Properties of interest

for invariants

vy 2?2 Ny
Java
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Transition system <:I conditions on description

deductive verification

sequences of states

<:I Properties of interest
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Verification rule G-INV (general invariance)

The Big Question

I1.

I2.
I3.

For assertions @, p

©—=p
00

@ Apr—= @ foral Tind

|:|p ( p is an invariant of @)

G-INV reduces the proof of an invariant p to finding an inductive
assertion @ that strengthens p and to checking the validity of

| J| + 2 first-order formulas ( verification conditions in the underlying

assertion language ).
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How do we find ¢ ?

40 years of research has not answered this question
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Verification rule G-INV (general invariance)

For assertions @, p
I1. ©—-p
I2. O—-o

I3. @ Apr—= @ foralTind

( p is an invariant of @)

Op

G-INV is complete:
if p is an invariant of ® then an assertion ¢ always exists

such that Il - I3 hold

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-

Verification rule INC-INV (incremental invariance)

For assertion p, qi .... gn

BO Oar ... Oagn

Bl ©O-p

B2 PAQA . AgnApr—p forall Tind
Op (p is an invariant of ® )

CS357D Spring 2007

Verlag, 1995. Chapter 4.
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Static analysis Semantics
Incremental analysis: . .
v 77?7 v
generate many simple gis that are inductive Java
byte
code
?

Deep analysis:

generate interesting invariants

CS357D Spring 2007

<:I conditions on description

Properties of interest

CS357D Spring 2007
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Petri net semantics: example

Petri net: manufacturing system example

described by d:<V,0,T> with

V:{p,pz,ps}

O:p1=1/\p2=2/\p3=2

g : {t,t2} with

Pr:pr=1Ap2=2Aps=2Ap=pi-l Apa=patl A ps'= ps-2
P2 : pzZ 2/\p32 2/\p1’= p1+l/\pz'= p2—2/\p3'= p3-2

Hator

ot

¥ @ﬁ@_

Model of a manufacturing system with 4 machines, 2 robots,
2 buffers
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Manufacturing system example: description

Manufacturing system example: background

» Automated manufacturing system with
» 4 machines M; - My, whose availability is modeled by Xs, Xe, X17, X18
» 2 robots R; and Rz, whose availability is modeled by x;2 and xi3
» 2 buffers, modeled by xi0 and xis
» delivery area, modeled by x2s

» Raw material is introduced in x;, whose initial marking is parametric (it may start
with any number of tokens)

» Raw material passes through two assembly lines, where it is processed by the
machines and transported by the robots, and ends up in the delivery area

» Initial marking:

Xi1=p

X2 = X4 = X7 = X12 = X13 = X16 = X19 = X264 = 1
X0 = Xi5 = 3

all other places: x; = 0
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Original description:
MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for

synthesis of petri net models for manufacturing systems. IEEE Transactions on
Robotics and Automation, 8(3):350-361, June 1992.

Subsequently analyzed for possibility of deadlocks:

Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and
mathematics p programming. IEEE Transactions on Robotics and Automation,
13(6):793-804, December 1997.

Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems
by compilation into Presburger Arithmetic. In Concur’'97, LNCS 1243, Springer-
Verlag, pp 213-227, 1997.

B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real
arithmetic. In Concur’99, LNCS 1664, Springer-Verlag, 1999.

Lecture 3, April 10 56 CS357D Spring 2007




Manufacturing system example: our analysis Invariants: exercise

Described in:
S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant local x,y: intfeger where x = N A y=0 AN >0
generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004. l;: while x > 0 do [
la: x:=x-1;
Some results: 2
l3zy:=y+x;
» generated 1900 invariants ]
» invariants imply absence of deadlock for initial values 1 <x; < 8 l4:
» invariants imply that the system is bounded
» invariants provide insight in the system structure, for example: invariants 2
show that robots R; and Rz are not symmetric: <x <N N <
e R, is used to transport material from M; to M; 0=x= (m=l)=(y=N-1) y S x+(N-1)
Xg + X1z + Xz20 = 1 and from Ms to the packaging area 0<y=<N-1 (m=lL)>(x=0) (m=l3) > x+y=1

X9 + X13 + X21 + X23 + Xz24 = 1 e R has the same tasks in the other assembly
line, but is also responsible to deliver the
combined product from the two assembly lines
to the output area (xzs).
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