Lecture 3

System Description: Transition systems

Example: $x=0 \wedge y=0$

Compact first-order representation of all sequences of states that can be generated by a system

Lecture 3, April 10	5	CS357D Spring 2007

Semantics

Runs

Infinite sequence of states

$$
\sigma: s_{0} s_{1} s_{2} s_{3} s_{4} \ldots
$$

is a run of Φ if

- Initiality: $s_{0} \approx \Theta$
- Consecution: for all $i>0$
S_{i+1} is a T-successor of s_{i}

for some $T \in \mathcal{J}$

SPL: Simple Programming Language

Given an SPL program P we can construct the corresponding transition system $\Phi:\langle\mathrm{V}, \Theta, \mathcal{J}\rangle$.

- each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled explicitly by a control variable π that ranges over program locations
- V : program variables $\cup\{\pi\}$
- : program initial condition

SPL example

```
local }x,y\mathrm{ : integer where }x=N\wedgey=
l
    I
    I}:y:=y+x
    ]
14:
```

$\Phi:\langle V, \Theta, \mathcal{J}\rangle$ with
$V:\left\{x:\right.$ int , y:int , $\left.\pi:\left\{1_{1}, l_{2}, l_{3}, l_{4}\right\}\right\}$ $\Theta: x=N \wedge y=0 \wedge \pi=l_{1}$
$\mathcal{J}:\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right\}$ with

```
\rho}\mp@subsup{\textrm{T}}{1}{}:\pi=\mp@subsup{I}{1}{}\wedge((x>0\wedge\mp@subsup{\pi}{}{\prime}=\mp@subsup{I}{2}{})\vee(x\leq0\wedge\mp@subsup{\pi}{}{\prime}=\mp@subsup{I}{4}{}))\wedge pres({x,y}
\rho}\mp@subsup{\rho}{T2}{}:\pi=\mp@subsup{I}{2}{}\wedge\mp@subsup{\pi}{}{\prime}=\mp@subsup{I}{3}{}\wedgex\mp@subsup{x}{}{\prime}=x-1\wedge\mp@subsup{y}{}{\prime}=
\rho}\mp@subsup{T}{3}{}:\pi=\mp@subsup{I}{3}{}\wedge\mp@subsup{\pi}{}{\prime}=\mp@subsup{l}{1}{}\wedge\mp@subsup{y}{}{\prime}=y+x\wedge\mp@subsup{x}{}{\prime}=
\rho}\mp@subsup{\rho}{4}{}:\operatorname{pres}({x,y,\pi}
```


Lecture 3, April 10

9
CS357D Spring 2007

Reachable state space

state s is Φ-reachable if it appears in some Φ-run
$\sigma: s_{0} \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{3} \mathbf{s}_{4}$ \qquad
system Φ is finite-state if the set of Φ-reachable states is finite
Notation: $\quad \Sigma$: state space
$\Sigma_{\Phi_{\triangleright}}$: Φ-reachable state space

Semantics

Reachable state space

```
local x: integer where }x>
l
    I
        13: x := 3x + 1 ;
        else
            14:x := x / 2;
    ]
```

size of the reachable state space not known in general Example runs:
$3,10,5,16,8,4,2,1$
$7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1$
9, 28, 14, 7,
$19,58,29,88,44,22, . . .$.

Reachable state space vs runs
System © may have any combination of finite state space infinite state space finite \# of runs infinite \# of runs
Lecture 3, April 10 13 CS357D Spring 2007
Invariants: examples
absence of array out-of-bounds accesses: A: array[1..N] of integer i : integer \qquad $\ell: A[i]:=7$ $(\pi=\ell) \rightarrow 1 \leq i \leq N$ absence of division by zero $\begin{aligned} & x, y, z: \text { integer } \\ & \cdots \cdots: \\ & \hdashline: x:=y / z \end{aligned}$ $(\pi=\ell) \rightarrow z \neq 0$
Lecture 3, April 10 CS357D Spring 2007

Invariants

An invariant q of program P :

- is a superset of the reachable state space of P
- q is an assertion (first-order formula)
- also written:

$$
\begin{array}{ll}
P \vDash q & \text { all reachable states of } P \text { satisfy } q \\
P \vDash \square q & \text { all states of all runs of } P \text { satisfy } q
\end{array}
$$

Lecture 3, April 10	14	CS357D Spring 2007

Invariants: example

```
local x,y: integer where x=2^y=0
```

1_{1} : while $x>0$ do [
$\mathrm{I}_{2}: \mathrm{x}:=\mathrm{x}-1$;
$1_{3}: y:=y+x$;
]
14:
reachable state space:
$\left\{\left(2,0, l_{1}\right),\left(2,0, l_{2}\right),\left(1,0, l_{3}\right),\left(1,1, l_{1}\right),\left(1,1, l_{2}\right),\left(0,1, l_{3}\right),\left(0,1, l_{1}\right),\left(0,1, l_{4}\right)\right\}$
some invariants:

$$
\begin{array}{lll}
0 \leq x \leq 2 & \left(\pi=l_{4}\right) \rightarrow(y=1) & y \leq x+1 \\
0 \leq y \leq 1 & \left(\pi=l_{4}\right) \rightarrow(x=0) & \left(\pi=l_{3}\right) \rightarrow x+y=1
\end{array}
$$

Proving invariants by model checking: example

To prove $y \leq x+2$:

1. Construct the reachable state space
$\Theta: x=2 \wedge y=0 \wedge \pi=l_{1}$

$\mathcal{J}:\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ with
$\rho_{\pi 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right) \vee\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\})$
$\rho_{\text {T2 }}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y$
$\rho_{\mathrm{T} 3}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x$
$\rho_{\mathrm{T} 4}: \operatorname{pres}(\{x, y, \pi\})$

Lecture 3, April 10
17
CS357D Spring 2007

Semantics

Proving invariants by model checking: example

To prove $y \leq x+2$:
2. Check that all reachable states satisfy $y \leq x+2$

Lecture 3, April 10
18 CS357D Spring 2007

Proving invariants by model checking: example

Or check on the fly
Trying to prove $x \neq y$ is invariant:

$\mathcal{J}:\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ with
$\rho_{\mathrm{T} 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right) \vee\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\})$ $\rho_{\mathrm{T} 2}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y$
$\rho_{\mathrm{T} 3}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x$
$\rho_{\text {T4 }}: \operatorname{pres}(\{x, y, \pi\})$

Invariants: example

```
local }x,y:\mathrm{ integer where }x=N\wedgey=0\wedgeN>
l
    I
    13: y := y + x ;
    ]
14:
```

invariants ?

$$
\begin{array}{lll}
0 \leq x=2 & \left(\pi=I_{4}\right) \rightarrow(y=1) & y \leq x-1 \\
0 \leq y<1 & \left(\pi=I_{4}\right) \rightarrow(x=0) & \left(\pi=I_{3}\right) \rightarrow x+y=1
\end{array}
$$

replace by N or $\mathrm{N}-1$?

Semantics

Invariants: example

```
local }x,y:\mathrm{ integer where }x=N\wedgey=0\wedgeN>
l
    I2: x:= x - 1;
    13: y := y +x
    ]
14:
```

invariants?

$$
\begin{array}{lll}
0 \leq x \leq N & \left(\pi=I_{4}\right) \rightarrow(y=N-1) & y \leq x+(N-1) \\
0 \leq y \leq N-1 & \left(\pi=I_{4}\right) \rightarrow(x=0) & \left(\pi=I_{3}\right) \rightarrow x+y=1
\end{array}
$$

How do we check?
Model checking for $N=1, N=2, N=3, N=4, N=5, \ldots \ldots \ldots .$.

Lecture 3, April 10	22	CS357D Spring 2007

Proving invariance properties deductively

To prove that assertion p is an invariant of system Φ :
(every state of every run of Φ satisfies p)
it is sufficient to prove that
(proof by induction on the run)

- p holds at the beginning of every run
(base case)
- P is preserved by every transition T
(inductive step)

Lecture 3, April 10	24	Cs357D Spring 2007

Proving invariance properties deductively : initiation

These conditions can be expressed in first-order logic:

- p holds at the beginning of every run

From the definition of a a run:
a sequence of states
$S_{0} \mathrm{~S}_{1} \mathrm{~S}_{2} \ldots .$.
is a run if
Initiality: so $\vDash \Theta$
(all initial states must satisfy Θ)
sufficient condition for p to hold at all initial states:

$$
\Theta \rightarrow p
$$

(Θ implies p)

Lecture 3, April 10

Proving invariance properties deductively: example

```
local x,y: integer where }x=N\wedgey=0\wedgeN>
l
    I2: x := x - 1;
    I_: y:= y+x;
    ]
14:
```

- p holds at the beginning of every run: (base case)
$x=N \wedge y=0 \wedge N>0 \wedge \pi=l_{1} \quad \rightarrow x \leq N \quad$ valid Θ

P

Proving invariance properties deductively : consecution

These conditions can be expressed in first-order logic:

- p is preserved by every transition T

From the definition of a a run:

$$
\begin{aligned}
& \text { a sequence of states } \quad s_{0} s_{1} s_{2} \ldots \ldots \text {.... is a run if } \\
& \text { Consecution: for each } j \geq 0, s_{j+1} \text { is a } T \text {-successor of } s_{j}, \\
& \text { for some } T \in J
\end{aligned} \begin{aligned}
& \text { induction step: assume } p \text { holds on } s_{j} \text {-- to prove: } p \text { holds on } s_{j+1} \text { after taking T } \\
& \text { in first-order logic: } p \wedge \rho_{T} \rightarrow p^{\prime}
\end{aligned}
$$

Lecture 3, April 10
26

Proving invariance properties deductively: example

p is preserved by every transition T

$$
p \wedge \rho_{T} \rightarrow p^{\prime}
$$

invariant to prove:

$$
x \leq N
$$

(inductive step)

Lecture 3, April 10	28	CS357D Spring 2007

Proving invariance properties deductively: example

```
J: : {T1, T2, T3, T4 } with
    \rho
    \rho
    \rho
    \rho}\mp@subsup{\mp@code{T4}}{}{:}:\operatorname{pres}({x,y,\pi}
```

- p is preserved by every transition T

$$
p \wedge \rho_{T} \rightarrow p^{\prime}
$$

(inductive step)
$T_{1}: x \leq N \wedge \ldots$.
$\wedge x^{\prime}=x \wedge$
.......
$\rightarrow x^{\prime} \leq N$ valid
$T_{3}: x \leq N \wedge$
\wedge
$\wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \leq N$ valid
$\mathrm{T}_{4}: \mathrm{x} \leq \mathrm{N} \wedge$ $\wedge x^{\prime}=x \wedge \ldots \ldots . \rightarrow x^{\prime} \leq N$ valid

Lecture 3, April 10 29 CS357D Spring 2007

Verification rule B-INV (basic invariance)

For assertion p

B1. $\quad \Theta \rightarrow p$
B2. $\quad P \wedge \rho_{T} \rightarrow p^{\prime} \quad$ for all T in π
$\square p \quad(p$ is an invariant of $\phi)$

B-INV reduces the proof of an invariant to checking the validity of $|\mathcal{J}|+1$ first-order formulas (verification conditions in the underlying assertion language).

Proving invariance properties deductively: example

```
local x,y: integer where }x=N\wedgey=0\wedgeN>
1
    I2: x:= x-1;
    l3:y := y +x;
    ]
14:
```

Proof: (validity of 5 first-order formulas)

$$
\begin{aligned}
& x=N \wedge y=0 \wedge N>0 \wedge \pi=l_{1} \rightarrow x \leq N \\
& T_{1}: x \leq N \wedge \ldots \ldots . . \wedge x^{\prime}=x \wedge \ldots \ldots \rightarrow x^{\prime} \leq N \\
& T_{2}: x \leq N \wedge \ldots \ldots . . \wedge x^{\prime}=x-1 \wedge \ldots \ldots . \rightarrow x^{\prime} \leq N \\
& T_{3}: x \leq N \wedge \ldots \wedge x^{\prime}=x \wedge \ldots \ldots \rightarrow x^{\prime} \leq N \\
& T_{4}: x \leq N \wedge \ldots \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \leq N
\end{aligned}
$$

$$
\text { Lecture 3, April } 10 \quad 30
$$

$$
30
$$

CS357D Spring 2007

Proving invariance properties deductively: example

invariant to prove:

$$
x \geq 0
$$

- p holds at the beginning of every run:

$$
\Theta \rightarrow p
$$

(base case)

$$
\frac{x=N \wedge y=0 \wedge N>0 \wedge \pi=l_{1}}{\Theta} \rightarrow \frac{x \geq 0}{p} \quad \text { valid }
$$

Lecture 3, April 10 32

Proving invariance properties deductively: example

$\mathscr{T}:\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ with
$\rho_{\mathrm{T} 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right) \vee\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\})$
$\rho_{T 2}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y$
$\rho_{\mathrm{T} 3}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x$
$\rho_{\text {T4 }}: \operatorname{pres}(\{x, y, \pi\})$

- p is preserved by every transition T

$$
p \wedge \rho_{\top} \rightarrow p^{\prime}
$$

(inductive step)
$T_{1}: x \geq 0 \wedge \ldots \ldots . . \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \geq 0 \quad$ valid
$T_{2}: x \geq 0 \wedge \ldots \ldots . \wedge x^{\prime}=x-1 \wedge \ldots \ldots . \rightarrow x^{\prime} \geq 0 \quad$ not valid
$T_{3}: x \geq 0 \wedge \ldots \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \geq 0 \quad$ valid
$\mathrm{T}_{4}: x \geq 0 \wedge \ldots \ldots . . . \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \geq 0 \quad$ valid

Lecture 3, April 10	33	CS357D Spring 2007

what is the problem?
To prove $x \geq 0$: (deductively for $N=2$?)

$$
\mathrm{T}_{2}: x \geq 0 \wedge \ldots \wedge x^{\prime}=x-1 \wedge \ldots \rightarrow x^{\prime} \geq 0
$$

what is the problem?

To prove $x \geq 0: \quad($ for $N=2)$
(Model checking) check that all reachable states satisfy $x \geq 0$

what is the problem?

$\wedge x^{\prime}=x-1 \wedge$ \qquad $\rightarrow x^{\prime} \geq 0$
inductive hypothesis is too weak
it is not preserved by all transitions
$x \geq 0$ is an invariant, but it is not inductive
it cannot be proven deductively directly
Lecture 3, April $10 \quad 36 \quad$ CS357D Spring 2007

Solution: strengthen the inductive hypothesis

identify the problem states

$$
\left(0,0,1_{2}\right),\left(0,1,1_{2}\right), \ldots \ldots \ldots \ldots \ldots
$$

in general: $\left(0, y, I_{2}\right)$ for any value of y
remove them by strengthening the inductive hypothesis

$$
x \geq 0 \wedge\left(\left(\pi=I_{2}\right) \rightarrow x>0\right)
$$

Transition T_{2} is preserved

$$
\left.\begin{array}{rl}
\mathrm{T}_{2}: & x
\end{array} \quad \geq 0 \wedge\left(\left(\pi=I_{2}\right) \rightarrow x>0\right) \wedge \pi=I_{2} \wedge x^{\prime}=x-1 \wedge \pi^{\prime}=I_{3}\right]\left(x^{\prime} \geq 0 \wedge\left(\left(\pi^{\prime}=I_{2}\right) \rightarrow x^{\prime}>0\right) .\right.
$$

what is the problem?

How about the initial condition?

- p holds at the beginning of every run:

$$
\Theta \rightarrow p
$$

(base case)

How about the other transitions?

```
\(\mathcal{T}:\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}\) with
\(\curvearrowright \rho_{\tau 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right)\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\})\)
```



```
    \(\rho_{\mathrm{T} 3}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x\)
    \(\rho_{T 4}: \operatorname{pres}(\{x, y, \pi\})\)
```

- p is preserved by every transition T

$$
p \wedge \rho_{T} \rightarrow p^{\prime}
$$

(inductive step)
$T_{1}: x \geq 0 \wedge\left(\left(\pi=l_{2}\right) \rightarrow x>0\right) \wedge$
$\left(x>0 \wedge \pi^{\prime}=I_{2}\right) \wedge \ldots \ldots \ldots \wedge x^{\prime}=x \wedge \ldots \ldots . . \quad$ valid \rightarrow
$x^{\prime} \geq 0 \wedge\left(\left(\pi^{\prime}=l_{2}\right) \rightarrow x>0\right)$

ecture 3, April 10

Verification rule B-INV (basic invariance)

For assertion p

B1. $\quad \Theta \rightarrow p$
B2. $\quad p \wedge \rho_{T} \rightarrow p^{\prime}$ for all T in \mathcal{J}
$\square \mathrm{p} \quad(\mathrm{p}$ is an invariant of $\Phi)$

B-INV reduces the proof of an invariant to checking the validity of $|\mathcal{J}|+1$ first-order formulas (verification conditions in the underlying assertion language).

Summary of proof of $x \geq 0$

To prove $x \geq 0$:
Application of B-INV did not work: $x \geq 0$ was too weak

Strengthen into

$x \geq 0 \wedge\left(\left(\pi=l_{2}\right) \rightarrow x>0\right)$
(implies the invariant we want to prove)
Application of B-INV on stronger invariant works: all verification conditions are valid

Verification rule G-INV (general invariance)

For assertions φ, p
I1. $\quad \varphi \rightarrow p$

I2. $\quad \Theta \rightarrow \varphi$
13. $\varphi \wedge \rho_{\mathrm{T}} \rightarrow \varphi^{\prime} \quad$ for all T in \exists
$\square p$
(p is an invariant of Φ)

G-INV reduces the proof of an invariant p to finding an inductive assertion φ that strengthens p and to checking the validity of
$|\mathscr{J}|+2$ first-order formulas (verification conditions in the underlying assertion language).

Semantics

CS357D Spring 2007

Verification rule G-INV (general invariance)

For assertions φ, p
I1. $\quad \varphi \rightarrow p$
12. $\quad \Theta \rightarrow \varphi$
13. $\quad \varphi \wedge \rho_{\mathrm{T}} \rightarrow \varphi^{\prime} \quad$ for all T in \tilde{J}

$$
\square p \quad(p \text { is an invariant of } \phi)
$$

> G-INV reduces the proof of an invariant p to finding an inductive assertion φ that strengthens p and to checking the validity of
> $|\mathcal{T}|+2$ first-order formulas (verification conditions in the underlying assertion language).

Semantics

The Big Question

How do we find φ ?

40 years of research has not answered this question

Lecture 3, April 10	48	CS357D Spring 2007

Verification rule G-INV (general invariance)

For assertions φ, p
I1. $\quad \varphi \rightarrow \mathrm{p}$
12. $\quad \Theta \rightarrow \varphi$
13. $\varphi \wedge \rho_{\tau} \rightarrow \varphi^{\prime}$ for all T in \mathcal{J}
$\square p \quad(p$ is an invariant of $\Phi)$

G-INV is complete:
if p is an invariant of Φ then an assertion φ always exists such that I1 - I3 hold

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, SpringerVerlag, 1995. Chapter 4.

Lecture 3, April 10	49	CS357D Spring 2007

Static analysis

Incremental analysis:
generate many simple qis that are inductive

Deep analysis:
generate interesting invariants

Verification rule INC-INV (incremental invariance)

```
For assertion p, q1 .... qn
```

 B0. \(\square q_{1} \quad \ldots . . \quad \square q_{n}\)
 B1. \(\quad \Theta \rightarrow p\)
 B2. \(\quad p \wedge q_{1} \wedge \ldots \ldots . \wedge q_{n} \wedge \rho_{T} \rightarrow p^{\prime} \quad\) for all \(T\) in \(J\)
 \(\square p \quad(p\) is an invariant of \(\phi)\)
 | Lecture 3, April 10 | 50 | CS357D Spring 2007 |
| :--- | :---: | :---: |

Semantics

Petri net semantics: example

described by $\Phi:\langle V, \Theta, \mathcal{J}\rangle$ with
$V:\left\{p_{1}, p_{2}, p_{3}\right\}$
$\Theta: p_{1}=1 \wedge p_{2}=2 \wedge p_{3}=2$
$\mathcal{J}:\left\{t_{1}, t_{2}\right\}$ with
$\rho_{1}: p_{1} \geq 1 \wedge p_{2} \geq 2 \wedge p_{3} \geq 2 \wedge p_{1}^{\prime}=p_{1}-1 \wedge p_{2}^{\prime}=p_{2}+1 \wedge p_{3}^{\prime}=p_{3}-2$
ρ_{2} :
$p_{2} \geq 2 \wedge p_{3} \geq 2 \wedge p_{1}^{\prime}=p_{1}+1 \wedge p_{2}^{\prime}=p_{2}-2 \wedge p_{3}^{\prime}=p_{3}-2$
Lecture 3, April 10
53
CS357D Spring 2007

Manufacturing system example: description

- Automated manufacturing system with
, 4 machines $M_{1}-M_{4}$, whose availability is modeled by $x_{5}, x_{6}, x_{17}, x_{18}$
- 2 robots R_{1} and R_{2}, whose availability is modeled by x_{12} and x_{13}
- 2 buffers, modeled by x_{10} and x_{15}
- delivery area, modeled by X_{25}
- Raw material is introduced in x_{1}, whose initial marking is parametric (it may start with any number of tokens)
- Raw material passes through two assembly lines, where it is processed by the machines and transported by the robots, and ends up in the delivery area
- Initial marking:

$$
\begin{aligned}
& x_{1}=p \\
& x_{2}=x_{4}=x_{7}=x_{12}=x_{13}=x_{16}=x_{19}=x_{24}=1 \\
& x_{10}=x_{15}=3 \\
& \text { all other places: } x_{i}=0
\end{aligned}
$$

Petri net: manufacturing system example

Model of a manufacturing system with 4 machines, 2 robots, 2 buffers

Manufacturing system example: background

Original description

MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for synthesis of petri net models for manufacturing systems. IEEE Transactions on Robotics and Automation, 8(3):350-361, June 1992.

Subsequently analyzed for possibility of deadlocks:
Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and mathematics p programming. IEEE Transactions on Robotics and Automation, 13(6):793-804, December 1997.
Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems by compilation into Presburger Arithmetic. In Concur'97, LNCS 1243, SpringerVerlag, pp 213-227, 1997.
B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real arithmetic. In Concur'99, LNCS 1664, Springer-Verlag, 1999.

Manufacturing system example: our analysis

Described in:

S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004.

Some results:

- generated 1900 invariants
- invariants imply absence of deadlock for initial values $1 \leq x_{1} \leq 8$
- invariants imply that the system is bounded
- invariants provide insight in the system structure, for example:

```
x8}+\mp@subsup{x}{12}{}+\mp@subsup{x}{20}{}=
```

$$
x_{9}+x_{13}+x_{21}+x_{23}+x_{24}=1
$$

show that robots R_{1} and R_{2} are not symmetric:

- R_{1} is used to transport material from M_{1} to M_{3} and from M_{3} to the packaging area
- R_{2} has the same tasks in the other assembly line, but is also responsible to deliver the combined product from the two assembly lines to the output area (x_{25}).

Invariants: exercise

```
local }x,y:\mathrm{ integer where }x=N\wedgey=0\wedgeN>
l
    l : x := x - 1;
    13: y := y + x ;
    ]
14:
```

invariants?
$0 \leq x \leq N$
$\left(\pi=l_{4}\right) \rightarrow(y=N-1)$
$y \leq x+(N-1)$
$0 \leq y \leq N-1$
$\left(\pi=l_{4}\right) \rightarrow(x=0)$
$\left(\pi=l_{3}\right) \rightarrow x+y=1$

