CS 357 D

Lecture 3

Proving invariants

http://cs357d.stanford.edu/

April 10, 2007

Computational Model

Behaviors: sequences of states

System description: stafe transition systems

compact first-order representation of all
sequences of states that can be generated
by a system

Programming language: ~ SPL (simple programming language)

with well-defined semantics in terms of
transition systems

Reference:

Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

Lecture 3, April 10 | CS357D Spring 2007 Lecture 3, April 10 2 CS357D Spring 2007
Properties of interest Semantics

overapproximation of the reachable
state space

Invariants:

demonstrated by the existence of a
ranking function

Loop termination:

Lecture 3, April 10 3 CS357D Spring 2007

v 2?72 2222 § bug finding
Java
SPL Petri Assembly -
SZ;Z brogram Net Code <:l conditions on program fext

‘e .
., X
. .
» .
0 o
0 o
? . o ?
A 'y

Transition system

a—

v deductive verification

conditions on description

sequences of states

<=

model checking

Properties of interest

Lecture 3, April 10 4 CS357D Spring 2007

System Description: Transition systems

Set of typed variables
Example: {x:int, y:int}

b:<V,0,T>

Initial condition: J \

first-order formula Set of transitions

Example: x=0 A y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Runs

Infinite sequence of states

O: So S1 S2 S3 54 eeeeeeennne.

is a run of @ if

« Initiality: so F O (so is an initial state)
e Consecution: for all i >0
T T T T

S1 S2 S3 ..

Si;1 IS @ T-successor of s;

for some T € J

Lecture 3, April 10 5 CS357D Spring 2007 Lecture 3, April 10 6 CS357D Spring 2007
Semantics SPL: Simple Programming Language
| |
Given an SPL program P we can construct the corresponding
???? 2222 . -
LI 4 transition system ®: <V , O , J >.
Java
SPL Petri Assembly -
[by;‘e brogram Net Code <:l conditions on program fext -
code » each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled
? explicitly by a control variable m that ranges over program locations
Transition system << l,:l conditions on description .
4 P » V: program variables U {m}
v b ©: program initial condition
sequences of states <:I Properties of interest
Lecture 3, April 10 7

CS357D Spring 2007

Lecture 3, April 10 8 CS357D Spring 2007

SPL example

Semantics

local x,y: integer where x=N A y=0
l;: while x > 0 do [

ls xi=x-1;

l3zy:=y+x;

]

I/.I

d: <V, 0, T> with

Vo {xint, yint, m{l, L2, 5, s }}

J:{Tl,Tz,T3,T4}Wifh

@:X:NAY:O/\T[:Il

pu:m=LA((x>0Am =) Vv(xcO0Am=1))Apres({x,y})
pre:m=Am =l3AXx ' =x-1AY =y
ps:m=lAnm =AYy =y +x A X =X

prs:pres({x,y,m})

Lecture 3, April 10 9 CS357D Spring 2007

§ 2222 2222 §

Java Assembly)

byte Code <:I conditions on program text

code

? =~ 2
<:I conditions on description
<:I Properties of interest
Lecture 3, April 10 10 CS357D Spring 2007

Reachable state space

Reachable state space

state s is ®-reachable if it appears in some ®-run

O: S0 S1 S2 S3 54 wevevvennnenn

system & is finite-state if the set of ®-reachable states is finite

Notation: 2 : state space
20-: ®-reachable state space

local x: integer where x > 0
l;: while x = 1 do [
l2: if odd(x) then
l3: x :=3x +1;
else
s x:=x/2;
]

ls:

size of the reachable state space not known in general
Example runs:

3,10, 5,16, 8, 4, 2,1

7, 22,11, 34,17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
9, 28,14, 7, ...

19, 58, 29, 88, 44, 22, ...

Lecture 3, April 10 I CS357D Spring 2007

Lecture 3, April 10 12 CS357D Spring 2007

Reachable state space vs runs

System ® may have any combination of

finite state space finite # of runs

infinite state space infinite # of runs

Lecture 3, April 10 CS357D Spring 2007

Invariants

An invariant q of program P:

» is a superset of the reachable state space of P

» q is an assertion (first-order formula)

» also written:

Pl=q all reachable states of P satisfy q

P = Ogq all states of all runs of P satisfy q

Lecture 3, April 10 CS357D Spring 2007

Invariants: examples

absence of array out-of-bounds accesses:

A: array[1..N] of integer
i : integer

....... (m=A£)—>1<i<N

absence of division by zero

X,y,z: integer

(n:l)—'z:#o

Lecture 3, April 10

CS357D Spring 2007

Invariants: example

local x,y: integer where x=2 A y=0
l;: while x > 0 do [

lz xi=x-1;

l3zy:=y+x;

]

I/.I

reachable state space:

{(2,00),(2,0,12),(1,0,13),(L, L, L), (L, L12),(0,L1z),(0, L, 1L),(0, 1 1s)}

some invariants:

0

I\

x<2 (m=l)—>(y=1) y<x+1

0

IA

y <1 (m=l)—=(x=0) (M=) x+y=1

Lecture 3, April 10

CS357D Spring 2007

Proving invariants by model checking: example

To prove ¥y < x + 2:
1. Construct the reachable state space

O:x:Z/\y:O/\ﬂ:ll

J:{T, T2, T3, T4 } with

pu:m=LA((x>0Am =l)v(xc0Aan=ls))Aapres({x,y})
pre:m=Aanm =AXx '=x-1AY =y
ps:m=AT =AYy =y+xAx =x

pra:pres({x,y,m})

Proving invariants by model checking: example

To prove ¥y < x + 2:

2. Check that all reachable states satisfy y < x + 2

Lecture 3, April 10 17 CS357D Spring 2007 Lecture 3, April 10 18 CS357D Spring 2007
Semantics Proving invariants by model checking: example

vy 2?2 Ny
Java
SPL Petri Assembly -
[SZ;Z i Net Code <:I conditions on program text

‘e .

., X

. .
» .
0 o
0 o
? . o ?
A 'y

Transition system

a—

model checking

conditions on description

sequences of states

<=

Properties of interest

Lecture 3, April 10 19 CS357D Spring 2007

Trying to prove x # y s invariant:

O:x:Z/\y:O/\ﬂ:ll
counter example trace

J:{T, T2, T3, T4 } with

pu:m=LA((x>0Am=l)v(xc0Aan=ls))Aapres({x,y})
pre:m=Aanm =AX '=x-1AY =y
ps:m=LAT =AYy =y+xAx =x

pra:pres({x,y,m})

Lecture 3, April 10 20 CS357D Spring 2007

Invariants: example

local x,y: intfeger where x = N A y=0 A N >0

l;: while x > 0 do [
la: x:=x-1;

l3zy:=y+x;
]
|1.1
invariants ?
o) w00 @ v
0Ly (m=l)—>(x=0) (m=b)—-x+y=1

replace by N or N-17?

Invariants: example

local x,y: intfeger where x = N A y=0 A N >0
l;: while x > 0 do [

laz x:=x-1;

l3zy:=y+x;

]

lz.:

invariants ?
0<xX<N (m=l)—=(y=N-1) y<x+(N-1)
0Ly<N-1 (m=l)—>(x=0) (m=b)—-x+y=1

How do we check?

Model checking forN=1,N=2,N=3,N=4, N =75,

Lecture 3, April 10 21 CS357D Spring 2007 Lecture 3, April 10 22 CS357D Spring 2007
Semantics Proving invariance properties deductively

vy 2?2 Ny
Java
SPL Petri Assembly -
[Ezsz i Net Code <:I conditions on program text

e
‘e,
‘e
0
0

Transition system

a—

deductive verification

conditions on description

sequences of states

<=

model checking

Properties of interest

Lecture 3, April 10 23 CS357D Spring 2007

To prove that assertion p is an invariant of system ®

(every state of every run of ® satisfies p)

it is sufficient to prove that (proof by induction on the run)

& p holds at the beginning of every run (base case)

e p is preserved by every transition T (inductive step)

Lecture 3, April 10 24 CS357D Spring 2007

Proving invariance properties deductively : initiation

These conditions can be expressed in first-order logic:
(base case)

& p holds at the beginning of every run

From the definition of a a run:

a sequence of states S0 S1 Sz..... is a run if

Initiality: so = © (all initial states must satisfy ©)

sufficient condition for p to hold at all initial states:

O-p (O implies p)

Proving invariance properties deductively : consecution

Lecture 3, April 10 25 CS357D Spring 2007

These conditions can be expressed in first-order logic:
e p is preserved by every transition T (inductive step)

From the definition of a a run:

a sequence of states So S1 Sz..... is a run if

Consecution: for each j20, sju1 is a T-successor of s;,
for some Te

induction step: assume p holds on's; -- to prove: p holds on sj.: after taking T

in first-order logic: PAPr—p

Lecture 3, April 10 26 CS357D Spring 2007

Proving invariance properties deductively: example

invariant to prove:
local x,y: integer where x = N A y=0 A N> 0 o pro
l: while x > 0 do [x <N
lo: X i=x-1; -
l3:y:=y +x;
1
|4:
« p holds at the beginning of every run: ©O-p

(base case)

X=NAYy=0AN>OAWM=L — x=N valid

0 P

Proving invariance properties deductively: example

Lecture 3, April 10 27 CS357D Spring 2007

invariant to prove:
local x,y: integer where x = N A y=0 A N> O P

l: while x > 0 do [x < N
lo: xi=x-1; -
l3:y:=y +x;

]

|4:

e p is preserved by every transition T
(inductive step)

PAPr—=p

Lecture 3, April 10 28 CS357D Spring 2007

Proving invariance properties deductively: example

J:{T, T2, T3, T4} with

pu:m=LA((x>0Am =) Vv(x<O0AT=))Apres({x,y})
pre:m=leAm =3AX ' =x-1AY =y
pz:m=LAT =AY =y+xAX =X

prs i pres({x,y,m})

e p is preserved by every transition T PAPr—p

(inductive step)

Proving invariance properties deductively: example

local x,y: integer where x = N A y=0 A N> O

Proof: (validity of 5 first-order formulas)

x <N
l: while x > 0 do [
la: x :=x-1; . . .
3y =y + X ; is an invariant for all
] values of N > 0

X=NAYy=0AN>OATM=L — x=N
Ti:X SNA e AX =2 XA e - x' 2N valid T X SNA . AX XA - xX'<N
T2: X SN A e AX =X =1A - x'<N valid T2t X SNA e AX =X =LA - x'=N
T3:X SN A e AX =X A o - x' <N valid T3 X SNA . AKX ZXA e - X' =N
T4: X SN A e AX =X A - x' <N valid To: X SN A e AX XA - X' <N
Lecture 3, April 10 29 CS357D Spring 2007 Lecture 3, April 10 30 CS357D Spring 2007
Verification rule B-INV (basic invariance) Proving invariance properties deductively: example
For assertion p local x,y: intfeger where x = N A y=0 A N> 0 invariant fo prove:
l: while x > 0 do [x>0
Bl. O-p :z:::;i
B2. pApr—p foralTind Lt]
Op (p is an invariant of @)
« p holds at the beginning of every run: ©O-p
B-INV reduces the proof of an invariant to checking the validity of (base case)

| J1 + 1 first-order formulas (verification conditions in the underlying
assertion language).

Lecture 3, April 10 31 CS357D Spring 2007

Xx=NAYy=0AN>OATWM=L = x20

0 p

valid

Lecture 3, April 10 32

CS357D Spring 2007

Proving invariance properties deductively: example

J:{T, T2, T3, T4} with

pu:m=LA((x>0Am =) Vv(x<O0AT=))Apres({x,y})
pre:m=leAm =3AX ' =x-1AY =y
pz:m=LAT =AY =y+xAX =X

prs i pres({x,y,m})

e p is preserved by every transition T PAPr—p
(inductive step)
TI:X 20 A .. AX =2ZXA . - x'20 valid
T2:X 20 A e AX =2X=1A .. - x" >0 not valid
T3:X 20 A oo AX ZXA . - x'20 valid
Te: X 20 A e AX ZXA . - x'20 valid
Lecture 3, April 10 33 CS357D Spring 2007

what is the problem?

To prove x = 0 : (forN=2)

(Model checking) check that all reachable states satisfy x = 0

3

Lecture 3, April 10 34 CS357D Spring 2007

what is the problem?

Toprove x = 0: (deductively for N=27?)

Lecture 3, April 10 35 CS357D Spring 2007

what is the problem?

T2 :%X = 0O|A AX =X=1A . -+ x>0

inductive hypothesis is too weak

it is not preserved by all transitions

X = 0 is an invariant, but it is not inductive

it cannot be proven deductively directly

Lecture 3, April 10 36 CS357D Spring 2007

Solution: strengthen the inductive hypothesis

identify the problem states

(0,0,12),(0,1,12), v

in general: (0,vy,lz) for any value of y

remove them by strengthening the inductive hypothesis

x20 Al((m=1l2)—=>x>0)

what is the problem?

Lecture 3, April 10 37 CS357D Spring 2007

Lecture 3, April 10 38 CS357D Spring 2007

Transition T2 is preserved

T x=20A((m=L)=2x>0)Am=LAax=x-1Am=13
- xX20A((m"=L)—=x">0)

How about the initial condition?

Xx20 A ((m=lL)—>2 x>0

Lecture 3, April 10 39 CS357D Spring 2007

« p holds at the beginning of every run: O-p

(base case)

X=NAYy=0AN>OATM=l = x2Z0A({(m=12)—x>0)

C p

still valid

Lecture 3, April 10 40 CS357D Spring 2007

How about the other transitions?

J:{T, T2, T3, T4 } with

'%'>Pn:n=l1/\((><>(XSOAﬂ'=lz.))/\Pres({’<'Y})
pre:m=leAam =13 A X AY' =y

pz:m=L AT =LAy =y+xAX =X
pre s pres({x,y,m})

& p is preserved by every transition T PAPr—p
(inductive step)
Ti:x20A((m=12) =2 x>0) A
(x>0AT =12) A o AKX ZXA o valid
-
xX20A((m=1)—>x>0)

Lecture 3, April 10 41 CS357D Spring 2007

Summary of proof of x > 0

To prove x 2 0 :

Application of B-INV did not work : x 2 0 was too weak

Strengthen into

X220 A ((m=1) - X > O) (implies the invariant we want to prove)

Application of B-INV on stronger invariant works:
all verification conditions are valid

Lecture 3, April 10 2 CS357D Spring 2007

Verification rule B-INV (basic invariance)

For assertion p

Bl. O-p
B2. pApr—p foralTind
Op (p is an invariant of @)

B-INV reduces the proof of an invariant to checking the validity of

| J1 + 1 first-order formulas (verification conditions in the underlying
assertion language).

Verification rule G-INV (general invariance)

For assertions @, p
I1. @ —=p
I2. ©—-o
I3. @ Apr— @ foralTind
Op (pis an invariant of ®)

Lecture 3, April 10 43 CS357D Spring 2007

G-INV reduces the proof of an invariant p to finding an inductive
assertion @ that strengthens p and to checking the validity of

| J| + 2 first-order formulas (verification conditions in the underlying
assertion language).

Lecture 3, April 10 44

CS357D Spring 2007

Semantics

Semantics

+ . A b B
Pefri ssembly <:| conditions on program fext

???? 7?7y
2 (=
code program Net Code

‘e

‘e
? ‘A

Q

Transition system

sequences of states

conditions on description

G-INV

Properties of interest

for invariants

vy 2?2 Ny
Java
SPL Petri Assembly -
Ezsz brogram Net Code <:l conditions on program fext

Transition system <:I conditions on description

deductive verification

sequences of states

<:I Properties of interest

Lecture 3, April 10

CS357D Spring 2007

Lecture 3, April 10 46 CS357D Spring 2007

Verification rule G-INV (general invariance)

The Big Question

I1.

I2.
I3.

For assertions @, p

©—=p
00

@ Apr—= @ foral Tind

|:|p (p is an invariant of @)

G-INV reduces the proof of an invariant p to finding an inductive
assertion @ that strengthens p and to checking the validity of

| J| + 2 first-order formulas (verification conditions in the underlying

assertion language).

Lecture 3, April 10

CS357D Spring 2007

How do we find ¢ ?

40 years of research has not answered this question

Lecture 3, April 10 48 CS357D Spring 2007

Verification rule G-INV (general invariance)

For assertions @, p
I1. ©—-p
I2. O—-o

I3. @ Apr—= @ foralTind

(p is an invariant of @)

Op

G-INV is complete:
if p is an invariant of ® then an assertion ¢ always exists

such that Il - I3 hold

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-

Verification rule INC-INV (incremental invariance)

For assertion p, qi gn

BO Oar ... Oagn

Bl ©O-p

B2 PAQA . AgnApr—p forall Tind
Op (p is an invariant of ®)

CS357D Spring 2007

Verlag, 1995. Chapter 4.
Lecture 3, April 10 49 CS357D Spring 2007 Lecture 3, April 10
Static analysis Semantics
Incremental analysis: . .
v 77?7 v
generate many simple gis that are inductive Java
byte
code
?

Deep analysis:

generate interesting invariants

CS357D Spring 2007

<:I conditions on description

Properties of interest

CS357D Spring 2007

Lecture 3, April 10

Lecture 3, April 10 51

Petri net semantics: example

Petri net: manufacturing system example

described by d:<V,0,T> with

V:{p,pz,ps}

O:p1=1/\p2=2/\p3=2

g : {t,t2} with

Pr:pr=1Ap2=2Aps=2Ap=pi-l Apa=patl A ps'= ps-2
P2 : pzZ 2/\p32 2/\p1’= p1+l/\pz'= p2—2/\p3'= p3-2

Hator

ot

¥ @ﬁ@_

Model of a manufacturing system with 4 machines, 2 robots,
2 buffers

Lecture 3, April 10 53 CS357D Spring 2007

Lecture 3, April 10 54 CS357D Spring 2007

Manufacturing system example: description

Manufacturing system example: background

» Automated manufacturing system with
» 4 machines M; - My, whose availability is modeled by Xs, Xe, X17, X18
» 2 robots R; and Rz, whose availability is modeled by x;2 and xi3
» 2 buffers, modeled by xi0 and xis
» delivery area, modeled by x2s

» Raw material is introduced in x;, whose initial marking is parametric (it may start
with any number of tokens)

» Raw material passes through two assembly lines, where it is processed by the
machines and transported by the robots, and ends up in the delivery area

» Initial marking:

Xi1=p

X2 = X4 = X7 = X12 = X13 = X16 = X19 = X264 = 1
X0 = Xi5 = 3

all other places: x; = 0

Lecture 3, April 10 55 CS357D Spring 2007

Original description:
MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for

synthesis of petri net models for manufacturing systems. IEEE Transactions on
Robotics and Automation, 8(3):350-361, June 1992.

Subsequently analyzed for possibility of deadlocks:

Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and
mathematics p programming. IEEE Transactions on Robotics and Automation,
13(6):793-804, December 1997.

Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems
by compilation into Presburger Arithmetic. In Concur’'97, LNCS 1243, Springer-
Verlag, pp 213-227, 1997.

B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real
arithmetic. In Concur’99, LNCS 1664, Springer-Verlag, 1999.

Lecture 3, April 10 56 CS357D Spring 2007

Manufacturing system example: our analysis Invariants: exercise

Described in:
S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant local x,y: intfeger where x = N A y=0 AN >0
generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004. l;: while x > 0 do [
la: x:=x-1;
Some results: 2
l3zy:=y+x;
» generated 1900 invariants]
» invariants imply absence of deadlock for initial values 1 <x; < 8 l4:
» invariants imply that the system is bounded
» invariants provide insight in the system structure, for example: invariants 2
show that robots R; and Rz are not symmetric: <x <N N <
e R, is used to transport material from M; to M; 0=x= (m=l)=(y=N-1) y S x+(N-1)
Xg + X1z + Xz20 = 1 and from Ms to the packaging area 0<y=<N-1 (m=lL)>(x=0) (m=l3) > x+y=1

X9 + X13 + X21 + X23 + Xz24 = 1 e R has the same tasks in the other assembly
line, but is also responsible to deliver the
combined product from the two assembly lines
to the output area (xzs).

Lecture 3, April 10 57 CS357D Spring 2007 Lecture 3, April 10 58 CS357D Spring 2007

