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Reference: 
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, 
Springer-Verlag, 1995.

Computational Model

sequences of states

state transition systems
compact first-order representation of all 
sequences of states that can be generated 
by a system

Behaviors:

System description:

Programming language: SPL (simple programming language)

with well-defined semantics in terms of 
transition systems
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Properties of interest
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Invariants: overapproximation of the reachable 
state space

Loop termination: demonstrated by the existence of a 
ranking function
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Semantics

4

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

bug finding
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System Description: Transition systems

5

 ": < V , # , T >

Set of typed variables

Initial condition: 
  first-order formula Set of transitions

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x:int, y:int}
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Runs
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Infinite sequence of states

!: s0 s1 s2 s3 s4 .............

is a run of " if

! Initiality:  s0 " #                          (s0 is an initial state)

! Consecution: for all i > 0

si+1 is a $-successor of si

for some $ ∈ T 

s0       s1    s2     s3  ....

$ $ $ $
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Semantics

7

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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SPL: Simple Programming Language
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Given an SPL program P we can construct the corresponding 

transition system ": < V , # , T >.

% each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled 
explicitly by a control variable ! that ranges over program locations

% V: program variables ∪ {!}

%#: program initial condition
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SPL example

9

local x,y: integer where x=N # y=0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

V : { x:int , y:int , !:{ l1, l2 , l3 , l4 } } # : x = N # y = 0 # ! = l1

": < V , # , T > with

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )
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Semantics

10

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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Reachable state space
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state s is "-reachable if it appears in some "-run

!: s0 s1 s2 s3 s4 .............

system " is finite-state if the set of "-reachable states is finite

Notation: '  : state space

'"%: "-reachable state space
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Reachable state space

12

local x: integer where x > 0

l1: while x ! 1 do [
    l2: if odd(x) then 
          l3: x := 3x + 1 ;
        else
          l4: x := x / 2 ;
    ]
l5: 

size of the reachable state space not known in general

Example runs:

3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
9, 28, 14, 7, .......
19, 58, 29, 88, 44, 22, .....
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Reachable state space vs runs

13

⊗finite state space

infinite state space

finite # of runs

infinite # of runs

System " may have any combination of
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Invariants

14

% is a superset of the reachable state space of P

% q is an assertion (first-order formula)

% also written:

An invariant q of program P:  

P & q all reachable states of P satisfy q

P ' !q all states of all runs of P satisfy q
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Invariants: examples
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absence of array out-of-bounds accesses:

A: array[1..N] of integer
i : integer
.......
l: A[i] := 7

........

( ! = l ) ( 1 " i " N

absence of division by zero

x,y,z: integer
.......
.......
l: x := y / z 

.......

( ! = l ) ( z ! 0
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Invariants: example

16

local x,y: integer where x=2 # y=0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

reachable state space:

{ ( 2, 0, l1 ) , ( 2, 0, l2 ) , ( 1, 0, l3 ) , ( 1, 1, l1 ) , ( 1, 1, l2 ) , ( 0, 1, l3 ) , ( 0, 1, l1) , ( 0, 1, l4 ) }

some invariants:

0 " x " 2

0 " y " 1

( ! = l4 ) ( ( y = 1 )

( ! = l4 ) ( ( x = 0 )

y " x + 1

( ! = l3 ) ( x + y = 1
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Proving invariants by model checking: example

17

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )

# : x = 2 # y = 0 # ! = l1

2, 0,
 l1

1, 0,
 l3

$4

$1 2, 0, 
l2

$4

$2

$4

$3

$4

$11, 1,
 l1

$4

$21, 1,
 l2

$4

0, 1,
 l3

$4

0, 1,
 l1

$4

0, 1,
 l4

$3 $1

1. Construct the reachable state space

To prove  y " x + 2 : 
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Proving invariants by model checking: example

18

2, 0,
 l1

1, 0,
 l3

2, 0, 
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

2. Check that all reachable states satisfy    y " x + 2

To prove  y " x + 2 : 

'

'%

)

)

)

)

)

)

)

)
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Semantics

19

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking
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Proving invariants by model checking: example
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T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )

# : x = 2 # y = 0 # ! = l1

2, 0,
 l1

1, 0,
 l3

$4

$1 2, 0, 
l2

$4

$2

$4

$3 1, 1,
 l1

Trying to prove  x ! y  is invariant: 

Or check on the fly

) ) )

counter example trace
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Invariants: example

21

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

 invariants ? 

0 " x " 2

0 " y " 1

( ! = l4 ) ( ( y = 1 )

( ! = l4 ) ( ( x = 0 )

y " x + 1

( ! = l3 ) ( x + y = 1

replace by N  or  N-1 ?
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Invariants: example

22

 invariants ? 

0 " x " N ( ! = l4 ) ( ( y = N - 1)

( ! = l4 ) ( ( x = 0 )

y " x + ( N - 1 )

( ! = l3 ) ( x + y = 1

How do we check?

0 " y " N - 1

Model checking for N = 1, N = 2, N = 3, N = 4, N = 5, ..........

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 
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Semantics

23

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively

24

( every state of every run of " satisfies p )

To prove that assertion p is an invariant of system "  :

it is sufficient to prove that 

! p holds at the beginning of every run

! p is preserved by every transition $

( proof by induction on the run )

( base case )

( inductive step )
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Proving invariance properties deductively : initiation

25

Initiality: s0 ' # 

! p holds at the beginning of every run ( base case )

These conditions can be expressed in first-order logic:

From the definition of a a run:

a sequence of states      s0 s1 s2.....       is a run if

( all initial states must satisfy # ) 

sufficient condition for p to hold at all initial states:

# ( p ( # implies p ) 
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Proving invariance properties deductively : consecution

26

Consecution: for each j#0, sj+1 is a $-successor of sj,

                   for some $∈T

! p is preserved by every transition $ ( inductive step )

These conditions can be expressed in first-order logic:

From the definition of a a run:

a sequence of states      s0 s1 s2.....       is a run if

induction step: assume p holds on sj  --  to prove: p holds on sj+1 after taking $

in first-order logic: p # &$ ( p’

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

27

! p holds at the beginning of every run: 

( base case )

# ( p

invariant to prove:

x " N

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

x = N # y = 0 # N > 0 # ! = l1   (  x " N

p#

valid
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Proving invariance properties deductively: example

28

invariant to prove:

x " N

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

! p is preserved by every transition $
( inductive step )

p # &$ ( p’
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Proving invariance properties deductively: example

29

! p is preserved by every transition $
( inductive step )

p # &$ ( p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )

$1 : x " N # ......... # x’ = x # .......  (  x’ " N 

$3 : x " N # ......... # x’ = x # .......  (  x’ " N 

$4 : x " N # ......... # x’ = x # .......  (  x’ " N 

$2 : x " N # ......... # x’ = x - 1 # .......  (  x’ " N 

valid

valid

valid

valid
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Proving invariance properties deductively: example

30

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

x " N

is an invariant for all
values of N > 0

Proof:

$1 : x " N # ......... # x’ = x # .......  (  x’ " N 

$3 : x " N # ......... # x’ = x # .......  (  x’ " N 

$4 : x " N # ......... # x’ = x # .......  (  x’ " N 

$2 : x " N # ......... # x’ = x - 1 # .......  (  x’ " N 

x = N # y = 0 # N > 0 # ! = l1   (  x " N

(validity of 5 first-order formulas)
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Verification rule B-INV (basic invariance)

31

For assertion p

B1.       # ( p

B2.       p # &$ ( p’   for all $ in T 

 !p

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order formulas ( verification conditions in the underlying 

assertion language ).

( p is an invariant of " )
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Proving invariance properties deductively: example

32

invariant to prove:

x # 0

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

! p holds at the beginning of every run: 

( base case )

# ( p

x = N # y = 0 # N > 0 # ! = l1   (  x # 0

p#

valid
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Proving invariance properties deductively: example

33

! p is preserved by every transition $
( inductive step )

p # &$ ( p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )

$1 : x # 0 # ......... # x’ = x # .......  (  x’ # 0 

$3 : x # 0 # ......... # x’ = x # .......  (  x’ # 0 

$4 : x # 0 # ......... # x’ = x # .......  (  x’ # 0 

$2 : x # 0 # ......... # x’ = x - 1 # .......  %  x’ # 0 

valid

not valid
valid

valid
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what is the problem?

34

2, 0,
 l1

1, 0,
 l3

2, 0, 
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

 (Model checking) check that all reachable states satisfy  x # 0

To prove  x # 0 : 

'

'%

)

)

)

)

)

)

)

)

( for N = 2 )
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what is the problem?

35

To prove  x # 0 : 

$2 : x # 0 # ......... # x’ = x - 1 # .......  %  x’ # 0 

2, 0,
 l1

1, 0,
 l3

2, 0, 
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

'

'%

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

( deductively for N = 2 ? )
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what is the problem?

36

$2 : x # 0 # ......... # x’ = x - 1 # .......  %  x’ # 0 

inductive hypothesis is too weak

it is not preserved by all transitions

x # 0  is an invariant, but it is not inductive

it cannot be proven deductively directly
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Solution: strengthen the inductive hypothesis

37

identify the problem states

remove them by strengthening the inductive hypothesis

( 0 , 0 , l2 ) , ( 0 , 1 , l2 ) , ................

in general:  ( 0 , y , l2 )   for any value of y

x # 0  #  ( ( ! = l2 ) ( x > 0 )
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what is the problem?

38

2, 0,
 l1

1, 0,
 l3

2, 0, 
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

'

'%

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

25, 1,
 l2
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Transition $2 is preserved

39

'

'%

$2 : x * 0 # ( ( ! = l2 ) ( x > 0 ) # ! = l2 # x’ = x - 1 # !’ = l3   

      %  x’ * 0 # ( ( !’ = l2 ) ( x’ > 0 )

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

x # 0  #  ( ( ! = l1 ) % x > 0 )

25, 1,
 l2
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How about the initial condition?

40

! p holds at the beginning of every run: 

( base case )

# ( p

x = N # y = 0 # N > 0 # ! = l1   (  x # 0 # (( ! = l2 ) ( x > 0) 

p#

still valid
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How about the other transitions?

41

! p is preserved by every transition $
( inductive step )

p # &$ ( p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ( ( x > 0 # !’ = l2 ) $ ( x " 0 # !’ = l4 ) ) # pres( { x , y } )
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres( { x , y , ! } )

$1 : x # 0 # (( ! = l2 ) ( x > 0) # 
     ( x > 0 # !’ = l2 ) # ......... #  x’ = x # .......  
     (
     x’ # 0 # (( !’ = l2 ) ( x > 0) 

valid
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Summary of proof of x # 0 

42

To prove x # 0 : 

Application of B-INV did not work : x # 0 was too weak

Strengthen into 

x # 0 # (( ! = l2 ) ( x > 0) (implies the invariant we want to prove)

Application of B-INV on stronger invariant works:
     all verification conditions are valid
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Verification rule B-INV (basic invariance)

43

For assertion p

B1.       # ( p

B2.       p # &$ ( p’   for all $ in T 

 !p

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order formulas ( verification conditions in the underlying 

assertion language ).

( p is an invariant of " )
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Verification rule G-INV (general invariance)

44

For assertions +, p

# ( +

+ # &$ ( +’   for all $ in T 

!p

G-INV reduces the proof of an invariant p to finding an inductive 
assertion + that strengthens p and to checking the validity of

| T| + 2 first-order formulas ( verification conditions in the underlying 

assertion language ).

( p is an invariant of " )

I1. + ( p

I2.

I3.
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Semantics

45

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

for invariants

G-INV
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Semantics
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Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

deductive verification
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Verification rule G-INV (general invariance)

47

For assertions +, p

# ( +

+ # &$ ( +’   for all $ in T 

!p

G-INV reduces the proof of an invariant p to finding an inductive 
assertion + that strengthens p and to checking the validity of

| T| + 2 first-order formulas ( verification conditions in the underlying 

assertion language ).

( p is an invariant of " )

I1. + ( p

I2.

I3.
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The Big Question

48

How do we find + ?

40 years of research has not answered this question
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Verification rule G-INV (general invariance)

49

For assertions +, p

# ( +

+ # &$ ( +’   for all $ in T 

!p ( p is an invariant of " )

I1. + ( p

I2.

I3.

G-INV is complete:

if p is an invariant of " then an assertion + always exists 
such that I1 - I3 hold

Reference: 
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-
Verlag, 1995. Chapter 4.
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Verification rule INC-INV (incremental invariance)

50

For assertion p, q1 .... qn

B1.       # ( p

B2.       p # q1 # ....... # qn # &$ ( p’   for all $ in T 

 !p ( p is an invariant of " )

B0.       !"#!!$$$$$$!!!"%
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Static analysis

51

Incremental analysis:

generate many simple qi’s  that are inductive

Deep analysis:

generate interesting invariants
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Semantics

52

Transition system

sequences of states

SPL 
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text
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Petri net semantics: example

53

1 1

222 23

p1

p3p2

t1 t2

described by         ": < V , # , T >    with

V :  { p1 , p2 , p3 }

# :  p1 = 1 # p2 = 2 # p3 = 2

T :  { t1 , t2 }  with

&1 : p1 # 1 # p2 # 2 # p3 # 2 # p1’= p1-1 # p2’= p2+1 # p3’= p3-2

&2 :            p2 # 2 # p3 # 2 # p1’= p1+1 # p2’= p2-2 # p3’= p3-2
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Petri net: manufacturing system example

54

Model of a manufacturing system with 4 machines, 2 robots, 
2 buffers
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Manufacturing system example: description

55

% Automated manufacturing system with 

% 4 machines M1 - M4, whose availability is modeled by x5, x6, x17, x18

% 2 robots R1 and R2, whose availability is modeled by x12 and x13

% 2 buffers, modeled by x10 and x15

% delivery area, modeled by x25

% Raw material is introduced in x1, whose initial marking is parametric (it may start 

with any number of tokens)

% Raw material passes through two assembly lines, where it is processed by the 

machines and transported by the robots, and ends up in the delivery area

% Initial marking:

x1 = p

x2 = x4 = x7 = x12 = x13 = x16 = x19 = x24 = 1

x10 = x15 = 3

all other places: xi = 0
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Manufacturing system example: background

56

Original description:

MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for 
synthesis of petri net models for manufacturing systems. IEEE Transactions on 
Robotics and Automation, 8(3):350-361, June 1992.

Subsequently analyzed for possibility of deadlocks:

Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and 
mathematics p programming. IEEE Transactions on Robotics and Automation, 
13(6):793-804, December 1997.

Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems 
by compilation into Presburger Arithmetic. In Concur’97, LNCS 1243, Springer-
Verlag, pp 213-227, 1997.

B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real 
arithmetic. In Concur’99, LNCS 1664, Springer-Verlag, 1999.
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Manufacturing system example: our analysis

57

% generated 1900 invariants

% invariants imply absence of deadlock for initial values 1 ! x1 ! 8

% invariants imply that the system is bounded

% invariants provide insight in the system structure, for example:

x8 + x12 + x20 = 1

Described in:

S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant 
generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004.

Some results:

x9 + x13 + x21 + x23 + x24 = 1

 show that robots R1 and R2 are not symmetric: 
• R1 is used to transport material from M1 to M3 

and from M3 to the packaging area
• R2 has the same tasks in the other assembly 

line, but is also responsible to deliver the 
combined product from the two assembly lines 
to the output area (x25).  

CS357D Spring 2007Lecture 3, April 10

Invariants: exercise

58

 invariants ? 

0 " x " N ( ! = l4 ) ( ( y = N - 1)

( ! = l4 ) ( ( x = 0 )

y " x + ( N - 1 )

( ! = l3 ) ( x + y = 10 " y " N - 1

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 


