
CS357D Spring 2007Lecture 3, April 10 1

CS 357 D
Lecture 3

http://cs357d.stanford.edu/

April 10, 2007

Proving invariants

CS357D Spring 2007Lecture 3, April 10 2

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, 1995.

Computational Model

sequences of states

state transition systems
compact first-order representation of all
sequences of states that can be generated
by a system

Behaviors:

System description:

Programming language: SPL (simple programming language)

with well-defined semantics in terms of
transition systems

CS357D Spring 2007Lecture 3, April 10

Properties of interest

3

Invariants: overapproximation of the reachable
state space

Loop termination: demonstrated by the existence of a
ranking function

CS357D Spring 2007Lecture 3, April 10

Semantics

4

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

bug finding

CS357D Spring 2007Lecture 3, April 10

System Description: Transition systems

5

 ": < V , # , T >

Set of typed variables

Initial condition:
 first-order formula Set of transitions

Example: x=0 ∧ y=0

Compact first-order representation of all sequences of states
that can be generated by a system

Example: {x:int, y:int}

CS357D Spring 2007Lecture 3, April 10

Runs

6

Infinite sequence of states

!: s0 s1 s2 s3 s4

is a run of " if

! Initiality: s0 " # (s0 is an initial state)

! Consecution: for all i > 0

si+1 is a $-successor of si

for some $ ∈ T

s0 s1 s2 s3

$ $ $ $

CS357D Spring 2007Lecture 3, April 10

Semantics

7

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 3, April 10

SPL: Simple Programming Language

8

Given an SPL program P we can construct the corresponding

transition system ": < V , # , T >.

% each program statement corresponds to a transition
no sequential structure in transition systems, therefore control is modeled
explicitly by a control variable ! that ranges over program locations

% V: program variables ∪ {!}

%#: program initial condition

CS357D Spring 2007Lecture 3, April 10

SPL example

9

local x,y: integer where x=N # y=0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

V : { x:int , y:int , !:{ l1, l2 , l3 , l4 } } # : x = N # y = 0 # ! = l1

": < V , # , T > with

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

CS357D Spring 2007Lecture 3, April 10

Semantics

10

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 3, April 10

Reachable state space

11

state s is "-reachable if it appears in some "-run

!: s0 s1 s2 s3 s4

system " is finite-state if the set of "-reachable states is finite

Notation: ' : state space

'"%: "-reachable state space

CS357D Spring 2007Lecture 3, April 10

Reachable state space

12

local x: integer where x > 0

l1: while x ! 1 do [
 l2: if odd(x) then
 l3: x := 3x + 1 ;
 else
 l4: x := x / 2 ;
]
l5:

size of the reachable state space not known in general

Example runs:

3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
9, 28, 14, 7,
19, 58, 29, 88, 44, 22,

CS357D Spring 2007Lecture 3, April 10

Reachable state space vs runs

13

⊗finite state space

infinite state space

finite # of runs

infinite # of runs

System " may have any combination of

CS357D Spring 2007Lecture 3, April 10

Invariants

14

% is a superset of the reachable state space of P

% q is an assertion (first-order formula)

% also written:

An invariant q of program P:

P & q all reachable states of P satisfy q

P ' !q all states of all runs of P satisfy q

CS357D Spring 2007Lecture 3, April 10

Invariants: examples

15

absence of array out-of-bounds accesses:

A: array[1..N] of integer
i : integer
.......
l: A[i] := 7

........

(! = l) (1 " i " N

absence of division by zero

x,y,z: integer
.......
.......
l: x := y / z

.......

(! = l) (z ! 0

CS357D Spring 2007Lecture 3, April 10

Invariants: example

16

local x,y: integer where x=2 # y=0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

reachable state space:

{ (2, 0, l1) , (2, 0, l2) , (1, 0, l3) , (1, 1, l1) , (1, 1, l2) , (0, 1, l3) , (0, 1, l1) , (0, 1, l4) }

some invariants:

0 " x " 2

0 " y " 1

(! = l4) ((y = 1)

(! = l4) ((x = 0)

y " x + 1

(! = l3) (x + y = 1

CS357D Spring 2007Lecture 3, April 10

Proving invariants by model checking: example

17

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

: x = 2 # y = 0 # ! = l1

2, 0,
 l1

1, 0,
 l3

$4

$1 2, 0,
l2

$4

$2

$4

$3

$4

$11, 1,
 l1

$4

$21, 1,
 l2

$4

0, 1,
 l3

$4

0, 1,
 l1

$4

0, 1,
 l4

$3 $1

1. Construct the reachable state space

To prove y " x + 2 :

CS357D Spring 2007Lecture 3, April 10

Proving invariants by model checking: example

18

2, 0,
 l1

1, 0,
 l3

2, 0,
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

2. Check that all reachable states satisfy y " x + 2

To prove y " x + 2 :

'

'%

)

)

)

)

)

)

)

)

CS357D Spring 2007Lecture 3, April 10

Semantics

19

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

CS357D Spring 2007Lecture 3, April 10

Proving invariants by model checking: example

20

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

: x = 2 # y = 0 # ! = l1

2, 0,
 l1

1, 0,
 l3

$4

$1 2, 0,
l2

$4

$2

$4

$3 1, 1,
 l1

Trying to prove x ! y is invariant:

Or check on the fly

)))

counter example trace

CS357D Spring 2007Lecture 3, April 10

Invariants: example

21

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

 invariants ?

0 " x " 2

0 " y " 1

(! = l4) ((y = 1)

(! = l4) ((x = 0)

y " x + 1

(! = l3) (x + y = 1

replace by N or N-1 ?

CS357D Spring 2007Lecture 3, April 10

Invariants: example

22

 invariants ?

0 " x " N (! = l4) ((y = N - 1)

(! = l4) ((x = 0)

y " x + (N - 1)

(! = l3) (x + y = 1

How do we check?

0 " y " N - 1

Model checking for N = 1, N = 2, N = 3, N = 4, N = 5,

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

CS357D Spring 2007Lecture 3, April 10

Semantics

23

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

model checking

deductive verification

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively

24

(every state of every run of " satisfies p)

To prove that assertion p is an invariant of system " :

it is sufficient to prove that

! p holds at the beginning of every run

! p is preserved by every transition $

(proof by induction on the run)

(base case)

(inductive step)

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively : initiation

25

Initiality: s0 ' #

! p holds at the beginning of every run (base case)

These conditions can be expressed in first-order logic:

From the definition of a a run:

a sequence of states s0 s1 s2..... is a run if

(all initial states must satisfy #)

sufficient condition for p to hold at all initial states:

(p (# implies p)

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively : consecution

26

Consecution: for each j#0, sj+1 is a $-successor of sj,

 for some $∈T

! p is preserved by every transition $ (inductive step)

These conditions can be expressed in first-order logic:

From the definition of a a run:

a sequence of states s0 s1 s2..... is a run if

induction step: assume p holds on sj -- to prove: p holds on sj+1 after taking $

in first-order logic: p # &$ (p’

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

27

! p holds at the beginning of every run:

(base case)

(p

invariant to prove:

x " N

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

x = N # y = 0 # N > 0 # ! = l1 (x " N

p#

valid

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

28

invariant to prove:

x " N

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

! p is preserved by every transition $
(inductive step)

p # &$ (p’

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

29

! p is preserved by every transition $
(inductive step)

p # &$ (p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

$1 : x " N # # x’ = x # (x’ " N

$3 : x " N # # x’ = x # (x’ " N

$4 : x " N # # x’ = x # (x’ " N

$2 : x " N # # x’ = x - 1 # (x’ " N

valid

valid

valid

valid

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

30

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

x " N

is an invariant for all
values of N > 0

Proof:

$1 : x " N # # x’ = x # (x’ " N

$3 : x " N # # x’ = x # (x’ " N

$4 : x " N # # x’ = x # (x’ " N

$2 : x " N # # x’ = x - 1 # (x’ " N

x = N # y = 0 # N > 0 # ! = l1 (x " N

(validity of 5 first-order formulas)

CS357D Spring 2007Lecture 3, April 10

Verification rule B-INV (basic invariance)

31

For assertion p

B1. # (p

B2. p # &$ (p’ for all $ in T

 !p

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order formulas (verification conditions in the underlying

assertion language).

(p is an invariant of ")

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

32

invariant to prove:

x # 0

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

! p holds at the beginning of every run:

(base case)

(p

x = N # y = 0 # N > 0 # ! = l1 (x # 0

p#

valid

CS357D Spring 2007Lecture 3, April 10

Proving invariance properties deductively: example

33

! p is preserved by every transition $
(inductive step)

p # &$ (p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

$1 : x # 0 # # x’ = x # (x’ # 0

$3 : x # 0 # # x’ = x # (x’ # 0

$4 : x # 0 # # x’ = x # (x’ # 0

$2 : x # 0 # # x’ = x - 1 # % x’ # 0

valid

not valid
valid

valid

CS357D Spring 2007Lecture 3, April 10

what is the problem?

34

2, 0,
 l1

1, 0,
 l3

2, 0,
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

 (Model checking) check that all reachable states satisfy x # 0

To prove x # 0 :

'

'%

)

)

)

)

)

)

)

)

(for N = 2)

CS357D Spring 2007Lecture 3, April 10

what is the problem?

35

To prove x # 0 :

$2 : x # 0 # # x’ = x - 1 # % x’ # 0

2, 0,
 l1

1, 0,
 l3

2, 0,
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

'

'%

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

(deductively for N = 2 ?)

CS357D Spring 2007Lecture 3, April 10

what is the problem?

36

$2 : x # 0 # # x’ = x - 1 # % x’ # 0

inductive hypothesis is too weak

it is not preserved by all transitions

x # 0 is an invariant, but it is not inductive

it cannot be proven deductively directly

CS357D Spring 2007Lecture 3, April 10

Solution: strengthen the inductive hypothesis

37

identify the problem states

remove them by strengthening the inductive hypothesis

(0 , 0 , l2) , (0 , 1 , l2) ,

in general: (0 , y , l2) for any value of y

x # 0 # ((! = l2) (x > 0)

CS357D Spring 2007Lecture 3, April 10

what is the problem?

38

2, 0,
 l1

1, 0,
 l3

2, 0,
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

'

'%

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

25, 1,
 l2

CS357D Spring 2007Lecture 3, April 10

Transition $2 is preserved

39

'

'%

$2 : x * 0 # ((! = l2) (x > 0) # ! = l2 # x’ = x - 1 # !’ = l3

 % x’ * 0 # ((!’ = l2) (x’ > 0)

x # 0

0, 0,
 l2

0, 1,
 l2

-1, 0,
 l3

-1, 0,
 l3

x # 0 # ((! = l1) % x > 0)

25, 1,
 l2

CS357D Spring 2007Lecture 3, April 10

How about the initial condition?

40

! p holds at the beginning of every run:

(base case)

(p

x = N # y = 0 # N > 0 # ! = l1 (x # 0 # ((! = l2) (x > 0)

p#

still valid

CS357D Spring 2007Lecture 3, April 10

How about the other transitions?

41

! p is preserved by every transition $
(inductive step)

p # &$ (p’

T: { $1 , $2 , $3 , $4 } with

&$1 : ! = l1 # ((x > 0 # !’ = l2) $ (x " 0 # !’ = l4)) # pres({ x , y })
&$2 : ! = l2 # !’ = l3 # x ‘ = x - 1 # y’ = y
&$3 : ! = l3 # !’ = l1 # y’ = y + x # x’ = x
&$4 : pres({ x , y , ! })

$1 : x # 0 # ((! = l2) (x > 0) #
 (x > 0 # !’ = l2) # # x’ = x #
 (
 x’ # 0 # ((!’ = l2) (x > 0)

valid

CS357D Spring 2007Lecture 3, April 10

Summary of proof of x # 0

42

To prove x # 0 :

Application of B-INV did not work : x # 0 was too weak

Strengthen into

x # 0 # ((! = l2) (x > 0) (implies the invariant we want to prove)

Application of B-INV on stronger invariant works:
 all verification conditions are valid

CS357D Spring 2007Lecture 3, April 10

Verification rule B-INV (basic invariance)

43

For assertion p

B1. # (p

B2. p # &$ (p’ for all $ in T

 !p

B-INV reduces the proof of an invariant to checking the validity of

| T| + 1 first-order formulas (verification conditions in the underlying

assertion language).

(p is an invariant of ")

CS357D Spring 2007Lecture 3, April 10

Verification rule G-INV (general invariance)

44

For assertions +, p

(+

+ # &$ (+’ for all $ in T

!p

G-INV reduces the proof of an invariant p to finding an inductive
assertion + that strengthens p and to checking the validity of

| T| + 2 first-order formulas (verification conditions in the underlying

assertion language).

(p is an invariant of ")

I1. + (p

I2.

I3.

CS357D Spring 2007Lecture 3, April 10

Semantics

45

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

for invariants

G-INV

CS357D Spring 2007Lecture 3, April 10

Semantics

46

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

deductive verification

CS357D Spring 2007Lecture 3, April 10

Verification rule G-INV (general invariance)

47

For assertions +, p

(+

+ # &$ (+’ for all $ in T

!p

G-INV reduces the proof of an invariant p to finding an inductive
assertion + that strengthens p and to checking the validity of

| T| + 2 first-order formulas (verification conditions in the underlying

assertion language).

(p is an invariant of ")

I1. + (p

I2.

I3.

CS357D Spring 2007Lecture 3, April 10

The Big Question

48

How do we find + ?

40 years of research has not answered this question

CS357D Spring 2007Lecture 3, April 10

Verification rule G-INV (general invariance)

49

For assertions +, p

(+

+ # &$ (+’ for all $ in T

!p (p is an invariant of ")

I1. + (p

I2.

I3.

G-INV is complete:

if p is an invariant of " then an assertion + always exists
such that I1 - I3 hold

Reference:
Zohar Manna, Amir Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-
Verlag, 1995. Chapter 4.

CS357D Spring 2007Lecture 3, April 10

Verification rule INC-INV (incremental invariance)

50

For assertion p, q1 qn

B1. # (p

B2. p # q1 # # qn # &$ (p’ for all $ in T

 !p (p is an invariant of ")

B0. !"#!!$$$$$$!!!"%

CS357D Spring 2007Lecture 3, April 10

Static analysis

51

Incremental analysis:

generate many simple qi’s that are inductive

Deep analysis:

generate interesting invariants

CS357D Spring 2007Lecture 3, April 10

Semantics

52

Transition system

sequences of states

SPL
program

Petri
Net

Java
byte
code

Assembly
Code

Java program C++ program

??

???? ????

Properties of interest

conditions on description

conditions on program text

CS357D Spring 2007Lecture 3, April 10

Petri net semantics: example

53

1 1

222 23

p1

p3p2

t1 t2

described by ": < V , # , T > with

V : { p1 , p2 , p3 }

: p1 = 1 # p2 = 2 # p3 = 2

T : { t1 , t2 } with

&1 : p1 # 1 # p2 # 2 # p3 # 2 # p1’= p1-1 # p2’= p2+1 # p3’= p3-2

&2 : p2 # 2 # p3 # 2 # p1’= p1+1 # p2’= p2-2 # p3’= p3-2

CS357D Spring 2007Lecture 3, April 10

Petri net: manufacturing system example

54

Model of a manufacturing system with 4 machines, 2 robots,
2 buffers

CS357D Spring 2007Lecture 3, April 10

Manufacturing system example: description

55

% Automated manufacturing system with

% 4 machines M1 - M4, whose availability is modeled by x5, x6, x17, x18

% 2 robots R1 and R2, whose availability is modeled by x12 and x13

% 2 buffers, modeled by x10 and x15

% delivery area, modeled by x25

% Raw material is introduced in x1, whose initial marking is parametric (it may start

with any number of tokens)

% Raw material passes through two assembly lines, where it is processed by the

machines and transported by the robots, and ends up in the delivery area

% Initial marking:

x1 = p

x2 = x4 = x7 = x12 = x13 = x16 = x19 = x24 = 1

x10 = x15 = 3

all other places: xi = 0

CS357D Spring 2007Lecture 3, April 10

Manufacturing system example: background

56

Original description:

MengChu Zhou, Frank DiCesare, Alan A. Desrochers, A hybrid methodology for
synthesis of petri net models for manufacturing systems. IEEE Transactions on
Robotics and Automation, 8(3):350-361, June 1992.

Subsequently analyzed for possibility of deadlocks:

Feng Chu, Xiao-Lan Xie, Deadlock analysis of petri nets using siphons and
mathematics p programming. IEEE Transactions on Robotics and Automation,
13(6):793-804, December 1997.

Laurent Fribourg, Hans Olsen, Proving safety properties of infinite-state systems
by compilation into Presburger Arithmetic. In Concur’97, LNCS 1243, Springer-
Verlag, pp 213-227, 1997.

B. Berard, L. Fribourg, Reachability analysis of (timed) petri nets using real
arithmetic. In Concur’99, LNCS 1664, Springer-Verlag, 1999.

CS357D Spring 2007Lecture 3, April 10

Manufacturing system example: our analysis

57

% generated 1900 invariants

% invariants imply absence of deadlock for initial values 1 ! x1 ! 8

% invariants imply that the system is bounded

% invariants provide insight in the system structure, for example:

x8 + x12 + x20 = 1

Described in:

S. Sankaranarayanan, H.B. Sipma, Z. Manna, Petri net analysis using invariant
generation. In Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004.

Some results:

x9 + x13 + x21 + x23 + x24 = 1

 show that robots R1 and R2 are not symmetric:
• R1 is used to transport material from M1 to M3

and from M3 to the packaging area
• R2 has the same tasks in the other assembly

line, but is also responsible to deliver the
combined product from the two assembly lines
to the output area (x25).

CS357D Spring 2007Lecture 3, April 10

Invariants: exercise

58

 invariants ?

0 " x " N (! = l4) ((y = N - 1)

(! = l4) ((x = 0)

y " x + (N - 1)

(! = l3) (x + y = 10 " y " N - 1

local x,y: integer where x = N # y=0 # N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

