Properties of interest

Invariants: overapproximation of the reachable state space

Loop termination: demonstrated by the existence of a ranking function

System Description: Transition systems

Set of typed variables
Example: \{x:int, y:int\}

Initial condition:
first-order formula
Example: \(x = 0 \land y = 0\)

Compact first-order representation of all sequences of states
that can be generated by a system

Runs

Infinite sequence of states

\(\sigma: s_0 \ s_1 \ s_2 \ s_3 \ s_4 \ \ldots\ldots\)

is a run of \(\Phi\) if

- **Initiality:** \(s_0 \models \Theta\)
 \((s_0\) is an initial state)\n
- **Consecution:** for all \(i > 0\)
 \(s_{i+1}\) is a \(T\)-successor of \(s_i\)
 for some \(T \in \mathcal{T}\)

SPL: Simple Programming Language

Given an SPL program \(P\) we can construct the corresponding transition system \(\Phi: <V, \Theta, \mathcal{T}>\).

- each program statement corresponds to a transition
- no sequential structure in transition systems, therefore control is modeled explicitly by a control variable \(n\) that ranges over program locations

- \(V\): program variables \(\cup \{n\}\)
- \(\Theta\): program initial condition
Reachable state space

state s is \(\Phi \)-reachable if it appears in some \(\Phi \)-run

\(\sigma : S_0 | S_1 | S_2 | S_3 | S_4 \)

system \(\Phi \) is finite-state if the set of \(\Phi \)-reachable states is finite

Notation: \(\Sigma : \) state space
\(\Sigma_{\Phi} : \Phi \)-reachable state space

Reachable state space

local x, y: integer where \(x=N \land y=0 \)
\(l_0: \) while \(x > 0 \) do
\(\quad l_1: x := x - 1 ; \)
\(\quad l_2: y := y + x ; \)
\(\} \)
\(l_3: \)

size of the reachable state space not known in general

Example runs:

3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
9, 28, 14, 7,
19, 58, 29, 88, 44, 22,
Reachable state space vs runs

System Φ may have any combination of

- finite state space finite # of runs
- infinite state space infinite # of runs

Invariants: examples

absence of array out-of-bounds accesses:

A: array[1..N] of integer
\[i : \text{integer} \]
\[\ldots \]
\[\ell : A[i] := 7 \]
\[\ldots \]

absence of division by zero

x,y,z: integer
\[\ldots \]
\[\ell : x := y / z \]
\[\ldots \]

Invariants

An invariant q of program P:

- is a superset of the reachable state space of P
- q is an assertion (first-order formula)
- also written:

\[P \models q \] all reachable states of P satisfy q
\[P \models \square q \] all states of all runs of P satisfy q

Invariants: example

local x,y: integer where x=2 \land y=0
l₁: while x > 0 do [l₂: x := x - 1 ; l₃: y := y + x ;] l₄:

reachable state space:
\{ (2, 0, l₁), (2, 0, l₂), (1, 0, l₁), (1, 1, l₁), (1, 1, l₂), (0, 1, l₁), (0, 1, l₂) \}

some invariants:

\[0 \leq x \leq 2 \] \[(\pi = l₄) \rightarrow (y = 1) \] \[y \leq x + 1 \]
\[0 \leq y \leq 1 \] \[(\pi = l₄) \rightarrow (x = 0) \] \[(\pi = l₃) \rightarrow x + y = 1 \]
Proving invariants by model checking: example

To prove \(y \leq x + 2 \):

1. Construct the reachable state space

\[\Theta : x = 2 \land y = 0 \land \pi = l_1 \]

\[\mathcal{T} : \{ \begin{array}{c} T_4 \end{array} \} \]

\[\mathcal{J} : \{ \begin{array}{c} T_1, T_2, T_3, T_4 \end{array} \} \]

- \(\rho_{11} : \pi = l_1 \land ((x > 0 \land \pi' = l_2) \lor (x \leq 0 \land \pi' = l_4)) \land \text{pres}(\{ x, y \}) \)
- \(\rho_{12} : \pi = l_2 \land \pi' = l_3 \land x = x - 1 \land y' = y \)
- \(\rho_{13} : \pi = l_3 \land \pi' = l_1 \land y' = y + x \land x' = x \)
- \(\rho_{14} : \text{pres}(\{ x, y, \pi \}) \)

2. Check that all reachable states satisfy \(y \leq x + 2 \)

\[\Sigma \]

Or check on the fly

Trying to prove \(x \neq y \) is invariant:

\[\Theta : x = 2 \land y = 0 \land \pi = l_1 \]

\[\mathcal{T} : \{ \begin{array}{c} T_4 \end{array} \} \]

\[\mathcal{J} : \{ \begin{array}{c} T_1, T_2, T_3, T_4 \end{array} \} \]

- \(\rho_{11} : \pi = l_1 \land ((x > 0 \land \pi' = l_2) \lor (x \leq 0 \land \pi' = l_4)) \land \text{pres}(\{ x, y \}) \)
- \(\rho_{12} : \pi = l_2 \land \pi' = l_3 \land x = x - 1 \land y' = y \)
- \(\rho_{13} : \pi = l_3 \land \pi' = l_1 \land y' = y + x \land x' = x \)
- \(\rho_{14} : \text{pres}(\{ x, y, \pi \}) \)
Invariants: example

```java
local x, y: integer where x = N ∧ y = 0 ∧ N > 0
l1: while x > 0 do [
    l2: x := x - 1;
    l3: y := y + x;
] l4:
```

invariants?

- $0 \leq x \leq 2$ (π = l4) → (y = 1)
- $0 \leq y \leq 1$ (π = l4) → (x = 0)
- $\pi = l3$ → $x + y = 1$

replace by N or N-1?

Invariants: example

```java
local x, y: integer where x = N ∧ y = 0 ∧ N > 0
l1: while x > 0 do [
    l2: x := x - 1;
    l3: y := y + x;
] l4:
```

invariants?

- $0 \leq x \leq N$ (π = l4) → (y = N - 1)
- $0 \leq y \leq N - 1$ (π = l4) → (x = 0)
- $\pi = l3$ → $x + y = 1$

How do we check?

Model checking for N = 1, N = 2, N = 3, N = 4, N = 5,

Semantics

- Java program
- C++ program
- Java byte code
- SPL program
- Petri Net
- Assembly Code

Transition system

conditions on program text

conditions on description

deductive verification

sequences of states

Properties of interest

model checking

Proving invariance properties deductively

To prove that assertion p is an invariant of system Φ:
(every state of every run of Φ satisfies p)

it is sufficient to prove that
- p holds at the beginning of every run (base case)
- p is preserved by every transition T (inductive step)
Proving invariance properties deductively: initiation

These conditions can be expressed in first-order logic:

- p holds at the beginning of every run (base case)

From the definition of a a run:

a sequence of states s_0, s_1, s_2, \ldots is a run if

Initiality: $s_0 \models \Theta$ (all initial states must satisfy Θ)

sufficient condition for p to hold at all initial states:

$$\Theta \rightarrow p$$

(Θ implies p)

Proving invariance properties deductively: example

local x, y: integer where $x = N \land y = 0 \land N > 0$

l1: while $x > 0$ do [
 l2: $x := x - 1$
 l3: $y := y + x$
]
l4:

Φ holds at the beginning of every run:

(base case)

$$x = N \land y = 0 \land N > 0 \land \pi = l_1 \rightarrow x \leq N$$

valid

$$\Theta \rightarrow p$$

(Θ implies p)

Proving invariance properties deductively: consecution

These conditions can be expressed in first-order logic:

- p is preserved by every transition τ (inductive step)

From the definition of a a run:

a sequence of states s_0, s_1, s_2, \ldots is a run if

Consecution: for each $j \geq 0$, s_{j+1} is a τ-successor of s_j, for some $\tau \in \mathcal{J}$

induction step: assume p holds on s_j -- to prove: p holds on s_{j+1} after taking τ

in first-order logic:

$$p \land \rho_\tau \rightarrow p'$$

Proving invariance properties deductively: example

local x, y: integer where $x = N \land y = 0 \land N > 0$

l1: while $x > 0$ do [
 l2: $x := x - 1$
 l3: $y := y + x$
]
l4:

Φ holds at the beginning of every run:

(base case)

$$x = N \land y = 0 \land N > 0 \land \pi = l_1 \rightarrow x \leq N$$

valid

$$\Theta \rightarrow p$$

(Θ implies p)

Proving invariance properties deductively: example

invariant to prove:

$$x \leq N$$

Proving invariance properties deductively: example

invariant to prove:

$$x \leq N$$
Proving invariance properties deductively: example

\[\mathcal{J} : \{ T_1 , T_2 , T_3 , T_4 \} \text{ with } \]
\[\rho_{T_1} : \pi = l_1 \land \left((x > 0 \land n' = l_2) \lor (x \leq 0 \land n' = l_4) \right) \land \text{pres}(\{ x , y \}) \]
\[\rho_{T_2} : \pi = l_2 \land n' = l_3 \land x' = x - 1 \land y' = y \]
\[\rho_{T_3} : \pi = l_3 \land n' = l_1 \land y' = y + x \land x' = x \]
\[\rho_{T_4} : \text{pres}(\{ x , y , \pi \}) \]

\(p \) is preserved by every transition \(\tau \)

(inductive step)

\[T_1 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \quad \text{valid} \]
\[T_2 : x \leq N \land \ldots \land x' = x - 1 \land \ldots \rightarrow x' \leq N \quad \text{valid} \]
\[T_3 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \quad \text{valid} \]
\[T_4 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \quad \text{valid} \]

Verification rule B-INV (basic invariance)

For assertion \(p \)

\[\begin{align*}
B1. & \quad \Theta \rightarrow p \\
B2. & \quad p \land \rho_\tau \rightarrow p' \quad \text{for all } \tau \text{ in } \mathcal{J} \\
\hline \\
& \quad p \quad (p \text{ is an invariant of } \Theta)
\end{align*} \]

B-INV reduces the proof of an invariant to checking the validity of \(| \mathcal{J} | + 1 \) first-order formulas (verification conditions in the underlying assertion language).

Proving invariance properties deductively: example

\[\text{local } x,y : \text{integer where } x = N \land y = 0 \land N > 0 \]
\[l_1 : \text{while } x > 0 \text{ do } [\\
\quad l_2: x := x - 1 ; \\
\quad l_3: y := y + x ; \\
\quad] \\
\quad l_4: \]

Proof: (validity of 5 first-order formulas)

\[x = N \land y = 0 \land N > 0 \land \pi = l_1 \rightarrow x \leq N \]
\[T_1 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \]
\[T_2 : x \leq N \land \ldots \land x' = x - 1 \land \ldots \rightarrow x' \leq N \]
\[T_3 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \]
\[T_4 : x \leq N \land \ldots \land x' = x \land \ldots \rightarrow x' \leq N \]

\[x \geq 0 \quad \text{valid} \]

\[\Theta \rightarrow p \]

invariant to prove:

\[\text{is an invariant for all values of } N > 0 \]
Proving invariance properties deductively: example

\(\mathcal{J} = \{ T_1, T_2, T_3, T_4 \} \) with

- \(\rho_1 : \pi = l_1 \land ((x > 0 \land \pi' = l_2) \lor (x \leq 0 \land \pi' = l_4)) \land \text{pres}(\{ x, y \}) \)
- \(\rho_2 : \pi = l_2 \land \pi' = l_3 \land x' = x - 1 \land y' = y \)
- \(\rho_3 : \pi = l_3 \land \pi' = l_1 \land y' = y + x \land x' = x \)
- \(\rho_4 : \text{pres}(\{ x, y, \pi \}) \)

- \(p \) is preserved by every transition \(\tau \)
 (inductive step)

- \(T_1 : x \geq 0 \land \ldots \land x' = x \land \ldots \rightarrow x' \geq 0 \)
 valid

- \(T_2 : x \geq 0 \land \ldots \land x' = x - 1 \land \ldots \rightarrow x' \geq 0 \)
 not valid

- \(T_3 : x \geq 0 \land \ldots \land x' = x \land \ldots \rightarrow x' \geq 0 \)
 valid

- \(T_4 : x \geq 0 \land \ldots \land x' = x \land \ldots \rightarrow x' \geq 0 \)
 valid

what is the problem?

To prove \(x \geq 0 \) : (for \(N = 2 \))

(Model checking) check that all reachable states satisfy \(x \geq 0 \)

\[\Sigma \]

\[\Sigma^{-} \]

what is the problem?

To prove \(x \geq 0 \) : (ductively for \(N = 2 \))

- \(T_2 : x \geq 0 \land \ldots \land x' = x - 1 \land \ldots \rightarrow x' \geq 0 \)

inductive hypothesis is too weak
it is not preserved by all transitions

\(x \geq 0 \) is an invariant, but it is not inductive
it cannot be proven deductively directly
Solution: strengthen the inductive hypothesis

identify the problem states

\((0, 0, l_2), (0, 1, l_2), \ldots, \ldots\)

in general: \((0, y, l_2)\) for any value of \(y\)

remove them by strengthening the inductive hypothesis

\[x \geq 0 \land ((\pi = l_2) \rightarrow x > 0)\]

what is the problem?

Transition \(\tau_2\) is preserved

\[\tau_2 : x \geq 0 \land ((\pi = l_2) \rightarrow x > 0) \land \pi = l_2 \land x' = x - 1 \land \pi' = l_3 \rightarrow x' \geq 0 \land ((\pi' = l_2) \rightarrow x' > 0)\]

How about the initial condition?

- \(p\) holds at the beginning of every run:

\[\Theta \rightarrow p\]

\[x = N \land y = 0 \land N > 0 \land \pi = l_1 \rightarrow x \geq 0 \land ((\pi = l_2) \rightarrow x > 0)\]

still valid
How about the other transitions?

\[\mathcal{J} = \{ \tau_1, \tau_2, \tau_3, \tau_4 \} \]

\[\rho_{\tau_1} : \pi = l_1 \land ((x > 0 \land \pi' = l_2) \land \text{pres}(\{ x, y \})) \]

\[\rho_{\tau_2} : \pi = l_2 \land \pi' = l_3 \land x \land y' = y \]

\[\rho_{\tau_3} : \pi = l_3 \land \pi' = l_1 \land y' = y + x \land x' = x \]

\[\rho_{\tau_4} : \text{pres}(\{ x, y, \pi \}) \]

\[p \text{ is preserved by every transition } \tau \]

(inductive step)

\[\tau_1 : x \geq 0 \land ((\pi = l_2) \rightarrow x > 0) \land \]

\[(x > 0 \land \pi' = l_2) \land \ldots \land x' = x \land \ldots \]

\[\rightarrow x' \geq 0 \land ((\pi' = l_2) \rightarrow x > 0) \]

Summary of proof of \(x \geq 0 \)

To prove \(x \geq 0 \):

Application of B-INV did not work: \(x \geq 0 \) was too weak

Strengthen into

\[x \geq 0 \land ((\pi = l_2) \rightarrow x > 0) \]

(implies the invariant we want to prove)

Application of B-INV on stronger invariant works:

all verification conditions are valid

Verification rule B-INV (basic invariance)

For assertion \(p \)

\[\begin{align*}
\text{B1.} & \quad \emptyset \rightarrow p \\
\text{B2.} & \quad p \land \rho_\tau \rightarrow p' \quad \text{for all } \tau \text{ in } \mathcal{J} \\
\end{align*} \]

\[\square p \quad (p \text{ is an invariant of } \Phi) \]

B-INV reduces the proof of an invariant to checking the validity of

\(| \mathcal{J} | + 1 \) first-order formulas (verification conditions in the underlying
assertion language).

Verification rule G-INV (general invariance)

For assertions \(\varphi, p \)

\[\begin{align*}
\text{I1.} & \quad \varphi \rightarrow p \\
\text{I2.} & \quad \emptyset \rightarrow \varphi \\
\text{I3.} & \quad \varphi \land \rho_\tau \rightarrow \varphi' \quad \text{for all } \tau \text{ in } \mathcal{J} \\
\end{align*} \]

\[\square p \quad (p \text{ is an invariant of } \Phi) \]

G-INV reduces the proof of an invariant \(p \) to finding an inductive
assertion \(\varphi \) that strengthens \(p \) and to checking the validity of

\(| \mathcal{J} | + 2 \) first-order formulas (verification conditions in the underlying
assertion language).
Verifications rule G-INV (general invariance)

For assertions \(\varphi, p \)

1. \(\varphi \rightarrow p \)
2. \(\emptyset \rightarrow \varphi \)
3. \(\varphi \land p^\tau \rightarrow \varphi' \) for all \(\tau \) in \(\mathcal{J} \)

\[\square p \quad (p \text{ is an invariant of } \Phi) \]

G-INV reduces the proof of an invariant \(p \) to finding an inductive assertion \(\varphi \) that strengthens \(p \) and to checking the validity of

\[| \mathcal{J} | + 2 \] first-order formulas (verification conditions in the underlying assertion language).

The Big Question

How do we find \(\varphi \) ?

40 years of research has not answered this question.
Static analysis

Incremental analysis:
- generate many simple q's that are inductive

Deep analysis:
- generate interesting invariants

Verification rule G-INV (general invariance)

For assertions ϕ, p
1. ϕ → p
2. Θ → ϕ
3. ϕ ∧ ρτ → ϕ' for all τ in J

□p (p is an invariant of Φ)

G-INV is complete:
if p is an invariant of Φ then an assertion ϕ always exists such that I1 - I3 hold

Reference:

Verification rule INC-INV (incremental invariance)

For assertion p, q1 qn
B0. □ q1 □ qn
B1. Θ → p
B2. p ∧ q1 ∧ ∧ qn ∧ ρτ → p' for all τ in J

□p (p is an invariant of Φ)

Semantics
Manufacturing system example: description

- Automated manufacturing system with
 - 4 machines M_1 - M_4, whose availability is modeled by x_5, x_6, x_{17}, x_{18}
 - 2 robots R_1 and R_2, whose availability is modeled by x_{12} and x_{13}
 - 2 buffers, modeled by x_{10} and x_{15}
 - Delivery area, modeled by x_{25}
- Raw material is introduced in x_i, whose initial marking is parametric (it may start with any number of tokens)
- Raw material passes through two assembly lines, where it is processed by the machines and transported by the robots, and ends up in the delivery area
- Initial marking:

 $x_1 = p$
 $x_2 = x_4 = x_7 = x_{12} = x_{13} = x_{16} = x_{19} = x_{24} = 1$
 $x_{10} = x_{15} = 3$
 all other places: $x_i = 0$

Original description:

Subsequently analyzed for possibility of deadlocks:

Manufacturing system example: our analysis

Described in:

Some results:
- generated 1900 invariants
- invariants imply absence of deadlock for initial values $1 \leq x_i \leq 8$
- invariants imply that the system is bounded
- invariants provide insight in the system structure, for example:

$$x_8 + x_{12} + x_{20} = 1$$
$$x_9 + x_{13} + x_{21} + x_{23} + x_{24} = 1$$

show that robots R_1 and R_2 are not symmetric:
- R_1 is used to transport material from M_4 to M_6 and from M_3 to the packaging area
- R_2 has the same tasks in the other assembly line, but is also responsible to deliver the combined product from the two assembly lines to the output area (x_{25}).

Invariants: exercise

```plaintext
local x,y: integer where x = N \land y=0 \land N > 0
l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
] l4:
```

invariants?

- $0 \leq x \leq N$ \quad (\pi = l_4) \rightarrow (y = N - 1) \quad y \leq x + (N - 1)$
- $0 \leq y \leq N - 1$ \quad (\pi = l_4) \rightarrow (x = 0) \quad (\pi = l_3) \rightarrow x + y = 1$