
CS357D Spring 2007Lecture 4, April 12 1

CS 357 D
Lecture 4

http://cs357d.stanford.edu/

April 12, 2007

Preconditions and backward propagation

CS357D Spring 2007Lecture 4, April 12

SPL example

2

local x,y: integer where x=N ! y=0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

V : { x:int , y:int , !:{ l1, l2 , l3 , l4 } } ! : x = N ! y = 0 ! ! = l1

": < V , ! , T > with

T: { #1 , #2 , #3 , #4 } with

$#1 : ! = l1 ! ((x > 0 ! !’ = l2) " (x " 0 ! !’ = l4)) ! pres({ x , y })
$#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y
$#3 : ! = l3 ! !’ = l1 ! y’ = y + x ! x’ = x
$#4 : pres({ x , y , ! })

CS357D Spring 2007Lecture 4, April 12

Invariants: example

3

local x,y: integer where x=2 ! y=0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

reachable state space:

{ (2, 0, l1) , (2, 0, l2) , (1, 0, l3) , (1, 1, l1) , (1, 1, l2) , (0, 1, l3) , (0, 1, l1) , (0, 1, l4) }

some invariants:

0 ! x ! 2

0 ! y ! 1

(! = l4) % (y = 1)

(! = l4) % (x = 0)

y ! x + 1

(! = l3) % x + y = 1

CS357D Spring 2007Lecture 4, April 12

Proving invariants by model checking: example

4

T: { #1 , #2 , #3 , #4 } with

$#1 : ! = l1 ! ((x > 0 ! !’ = l2) " (x " 0 ! !’ = l4)) ! pres({ x , y })
$#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y
$#3 : ! = l3 ! !’ = l1 ! y’ = y + x ! x’ = x
$#4 : pres({ x , y , ! })

! : x = 2 ! y = 0 ! ! = l1

2, 0,
 l1

1, 0,
 l3

#4

#1 2, 0,
l2

#4

#2

#4

#3

#4

#11, 1,
 l1

#4

#21, 1,
 l2

#4

0, 1,
 l3

#4

0, 1,
 l1

#4

0, 1,
 l4

#3 #1

1. Construct the reachable state space

To prove y ! x + 2 :

CS357D Spring 2007Lecture 4, April 12

Proving invariants by model checking: example

5

2, 0,
 l1

1, 0,
 l3

2, 0,
l2

1, 1,
 l1

1, 1,
 l2

0, 1,
 l3

0, 1,
 l1

0, 1,
 l4

2. Check that all reachable states satisfy y ! x + 2

To prove y ! x + 2 :

&

&$

'

'

'

'

'

'

'

'

CS357D Spring 2007Lecture 4, April 12

Invariants: example

6

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

 invariants ?

0 ! x ! 2

0 ! y ! 1

(! = l4) % (y = 1)

(! = l4) % (x = 0)

y ! x + 1

(! = l3) % x + y = 1

replace by N or N-1 ?

CS357D Spring 2007Lecture 4, April 12

Invariants: example

7

 invariants ?

0 ! x ! N (! = l4) % (y = N - 1)

(! = l4) % (x = 0)

y ! x + (N - 1)

(! = l3) % x + y = 1

How do we check?

0 ! y ! N - 1

Model checking for N = 1, N = 2, N = 3, N = 4, N = 5,

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

CS357D Spring 2007Lecture 4, April 12

Proving invariance properties deductively

8

(every state of every run of " satisfies p)

To prove that assertion p is an invariant of system " :

it is sufficient to prove that

p holds at the beginning of every run

p is preserved by every transition

(proof by induction on the run)

(base case)

(inductive step)

For assertion p

B1. ! % p

B2. p ! $# % p’ for all # in T

 !p (p is an invariant of ")

B-INV

CS357D Spring 2007Lecture 4, April 12

Proving invariance properties deductively: example

9

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

x ! N

is an invariant for all
values of N > 0

Proof:

#1 : x ! N ! ! x’ = x ! % x’ ! N

#3 : x ! N ! ! x’ = x ! % x’ ! N

#4 : x ! N ! ! x’ = x ! % x’ ! N

#2 : x ! N ! ! x’ = x - 1 ! % x’ ! N

x = N ! y = 0 ! N > 0 ! ! = l1 % x ! N

(validity of 5 first-order formulas)

CS357D Spring 2007Lecture 4, April 12

Proving invariance properties deductively: example

10

#1 : x " 0 ! ! x’ = x ! % x’ " 0

#3 : x " 0 ! ! x’ = x ! % x’ " 0

#4 : x " 0 ! ! x’ = x ! % x’ " 0

#2 : x " 0 ! ! x’ = x - 1 ! $ x’ " 0

valid

not valid
valid

valid

invariant to prove:

x " 0

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

x = N ! y = 0 ! N > 0 ! ! = l1 % x " 0 valid

Not a proof:

CS357D Spring 2007Lecture 4, April 12

what is the problem?

11

#2 : x " 0 ! ! x’ = x - 1 ! $ x’ " 0

inductive hypothesis is too weak

it is not preserved by all transitions

x " 0 is an invariant, but it is not inductive

it cannot be proven deductively directly

CS357D Spring 2007Lecture 4, April 12

Solution: strengthen the inductive hypothesis

12

identify the problem states

remove them by strengthening the inductive hypothesis

(0 , 0 , l2) , (0 , 1 , l2) ,

in general: (0 , y , l2) for any value of y

x " 0 ! ((! = l2) % x > 0)

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

13

if p(V) ! $#(V,V’) % p(V’) does not hold identify the largest
set of states for
which it does hold

find the weakest formula q(V) such that

q(V) ! $#(V,V’) % p(V’)

holds for all values of V’

represented by the weakest precondition

wpc(# , p) : ∀V’ . $#(V,V’) % p(V’)

q

p

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

14

identify the largest
set of states for
which it does hold

represented by the weakest precondition

wpc(# , p) : ∀V’ . $#(V,V’) % p(V’)

q

p

all values (assignments, interpretations) of V

such that

for all values (assignments, interpretations)
of V’

$#(V,V’) % p(V’) is true

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

15

largest set of states
for which # leads to p

q

p

 (∀V’ . $#(V,V’) % p(V’)) ! $#(V,V’) % p(V’)

wpc(# , p)

 (∀Z . $#(V, Z) % p(Z)) ! $#(V, V’) % p(V’)

assertion over V

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

16

(∀Z . $#(V, Z) % p(Z))wpc set of states

 (∀Z . $#(V, Z) % p(Z)) ! $#(V, V’) % p(V’)

verification condition valid or not valid

true or false

 ∀V,V’ [(∀Z . $#(V, Z) % p(Z)) ! $#(V, V’) % p(V’)]

validity of verification condition

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation: example

17

failed verification condition: x (0 ! $#2 % x’ (0

with $#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y

wpc(#2 , x (0) : ∀x’,y’,!’ . $#2(x,y,!, x’,y’,!’) % x’ (0

∀x’,y’!’ . (! = l2 ! !’ = l3 ! x’ = x - 1 ! y’ = y) % x’ (0

can be simplified to (! = l2) % x - 1 (0

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

18

Two approaches

wpc(# , p) may not
be inductivewpc(# , p) is invariant# Prove that

and use it as a supporting invariant in INC-INV

Use p ! wpc(# , p) as the strengthening in G-INV

In both cases the verification condition for # is guaranteed
to be valid, but verification conditions for other transitions
may now fail

Note: if p is invariant

 then wpc(# , p) is also invariant for all # ∈ T

CS357D Spring 2007Lecture 4, April 12

Verification rule INC-INV (incremental invariance)

19

For assertion p, q1 qn

B1. ! % p

B2. p ! q1 ! ! qn ! $# % p’ for all # in T

 !p (p is an invariant of ")

B0. !"#!!$$$$$$!!!"%

CS357D Spring 2007Lecture 4, April 12

Proving the supporting invariant

20

invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

x = N ! y = 0 ! N > 0 ! ! = l1 % ((! = l2) % x > 0) valid

Proof:

(! = l2) % x > 0

#1 : ! ((x > 0 ! !’ = l2) "
 (x) 0 ! !’ = l4)) ! x’ = x ! % ((!’ = l2) % x’ > 0) valid

#2 : ! !’ = l3 ! % ((!’ = l2) % x’ > 0) valid

#3 : ! !’ = l1 ! % ((!’ = l2) % x’ > 0) valid

#4 : ! !’ = ! ! x’ = x ! % ((!’ = l2) % x’ > 0) valid

CS357D Spring 2007Lecture 4, April 12

Strengthening by backwards propagation

21

Two approaches

wpc(# , p) may not
be inductivewpc(# , p) is invariant# Prove that

and use it as a supporting invariant in INC-INV

Use p ! wpc(# , p) as the strengthening in G-INV

In both cases the verification condition for # is guaranteed
to be valid, but verification conditions for other transitions
may now fail

Note: if p is invariant

 then wpc(# , p) is also invariant for all # ∈ T

CS357D Spring 2007Lecture 4, April 12

Verification rule G-INV (general invariance)

22

For assertions *, p

! % *

* ! $# % *’ for all # in T

!p (p is an invariant of ")

I1. * % p

I2.

I3.

CS357D Spring 2007Lecture 4, April 12

Backward propagation does not always work

23

invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

(! = l4) % y = (N2 - N)/2

((! = l4) % y = (N2 - N)/2) ! $#1 % ((!’ = l4) % y’ = (N2 - N)/2) not valid

*

not preserved by #1 :

wpc (#1 , *) : (! = l1 ! x = 0) % y = (N2 - N)/2

*1

CS357D Spring 2007Lecture 4, April 12

Backward propagation does not always work

24

invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

(! = l4) % y = (N2 - N) / 2

((! = l1 ! x = 0) % y = (N2 - N)/2) ! $#3 % (!’ = l1 ! x = 0) % y’ = (N2 - N)/2

not valid

*

 *1 : (! = l1 ! x = 0) % y = (N2 - N) / 2

not preserved by #3 :

wpc(#1 , *1) : *2 not preserved by #2

wpc(#1 , *2) : *3 not preserved by #1

CS357D Spring 2007Lecture 4, April 12

General schema for backwards propagation

25

*

invariant we want to prove: *

not inductive not preserved by #

*1 : * ! wpc(# , *) not inductive not preserved by #

*2 : *1 ! wpc(# , *1) not inductive not preserved by #

*3 : *2 ! wpc(# , *2) not inductive not preserved by #

*4 : *3 ! wpc(# , *3) not inductive not preserved by #

*n : *n-1 ! wpc(# , *n-1) inductive

CS357D Spring 2007Lecture 4, April 12

Predicate transformers

26

* assertion (predicate) set of states

Example: x > 0 { 1 , 2 , 3 , 4 , } N

{ ... 0.0001 , ... 0.01 , ... } R

domain

{ 1 , 2 } &$

A predicate transformer is a function that maps

predicates into predicates

sets of states into sets of states

CS357D Spring 2007Lecture 4, April 12

Backwards propagation expressed as a predicate transformer

27

Given a predicate *

Conjoin it with the wpc of all transitions that are not preserved

(and a transition system ")

F(*) = * ! wpc(#i1 , *) ! wpc(#i2 , *) ! ! wpc(#in , *)

To prove * invariant keep applying F to * until we get

a predicate that is preserved by all transitions (that is inductive)

CS357D Spring 2007Lecture 4, April 12

Weakest precondition

28

wpc(# , *)

What if * is preserved by # ?

largest set of states from which #
leads to a *-state

CS357D Spring 2007Lecture 4, April 12

Weakest precondition

29

if p(V) ! $#(V,V’) % p(V’) does not hold identify the largest
set of states for
which it does hold

find the weakest formula q(V) such that

q(V) ! $#(V,V’) % p(V’)

holds for all values of V’

represented by the weakest precondition

wpc(# , p) : ∀V’ . $#(V,V’) % p(V’)

q

p

CS357D Spring 2007Lecture 4, April 12

Weakest precondition

30

wpc(# , *)

What if * is preserved by # ?

largest set of states from which #
leads to a *-state

wpc(# , *) must be weaker than *

* % wpc(# , *)

* ! wpc(# , *) % *

wpc(# , *)

*

CS357D Spring 2007Lecture 4, April 12

Backwards propagation expressed as a predicate transformer

31

Given a predicate *

Conjoin it with the wpc of all transitions that are not preserved

(and a transition system ")

F(*) = * ! !#∈T wpc (# , *)

To prove * invariant keep applying F to * until we get a

predicate that is preserved by all transitions (that is inductive)

To prove * invariant keep applying F to * until we reach

a fixed point

F(*) = *

CS357D Spring 2007Lecture 4, April 12

Fixed points: examples

32

f(x:int) = ⎣x/2⎦ fixed point: x = 0

f (0) = 0

f(x:real) = x/2 fixed point: x = 0

f (0) = 0

CS357D Spring 2007Lecture 4, April 12

Tarski’s fixed point theorem (1955)

33

if F(*) is a monotone function and reductive

F(*) ⊆ *

or

F(*) % *

*1 ⊆ *2 % F(*1) ⊆ F(*2)

or

*1 ⊆ *2 implies F(*1) ⊆ F(*2)

then F has a unique greatest fixed point (gfp)

that can be obtained by repeated application of F :

gfp (F) = limn%# Fn (true)

CS357D Spring 2007Lecture 4, April 12

Fixed points: examples

34

f(x:int) = ⎣x/2⎦ fixed point: x = 0

f (0) = 0

f(x:real) = x/2 fixed point: x = 0

f (0) = 0

fixed point is reached in finitely many function applications,
starting from any value of x

reaching the fixed point from any value x > 0 takes infinitely
many function applications

CS357D Spring 2007Lecture 4, April 12

Backwards propagation expressed as a predicate transformer

35

Given a predicate *

Conjoin it with the wpc of all transitions

F(*) = * ! !#∈T wpc (# , *)

To prove * invariant keep applying F to * until we reach

a fixed point

F(*) = *

Note: F(true) = true
true is the greatest fixed point of F

CS357D Spring 2007Lecture 4, April 12

Backwards propagation expressed as a predicate transformer

36

Assertion * is an invariant of system " : < V , ! , T >

if the greatest fixed point of

F(X) = * ! X ! !#∈T wpc (# , X)

contains !

CS357D Spring 2007Lecture 4, April 12

Backward propagation does not always work

37

invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
 l2: x := x - 1 ;
 l3: y := y + x ;
]
l4:

(! = l4) % y = (N2 - N) / 2

*

wpc(#1 , *1) : *2 not preserved by #2

wpc(#1 , *2) : *3 not preserved by #1

does not terminate

