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SPL example
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local x,y: integer where x=N ! y=0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

V : { x:int , y:int , !:{ l1, l2 , l3 , l4 } } ! : x = N ! y = 0 ! ! = l1

": < V , ! , T > with

T: { #1 , #2 , #3 , #4 } with

$#1 : ! = l1 ! ( ( x > 0 ! !’ = l2 ) " ( x " 0 ! !’ = l4 ) ) ! pres( { x , y } )
$#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y
$#3 : ! = l3 ! !’ = l1 ! y’ = y + x ! x’ = x
$#4 : pres( { x , y , ! } )
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Invariants: example
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local x,y: integer where x=2 ! y=0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

reachable state space:

{ ( 2, 0, l1 ) , ( 2, 0, l2 ) , ( 1, 0, l3 ) , ( 1, 1, l1 ) , ( 1, 1, l2 ) , ( 0, 1, l3 ) , ( 0, 1, l1) , ( 0, 1, l4 ) }

some invariants:

0 ! x ! 2

0 ! y ! 1

( ! = l4 ) % ( y = 1 )

( ! = l4 ) % ( x = 0 )

y ! x + 1

( ! = l3 ) % x + y = 1
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Proving invariants by model checking: example

4

T: { #1 , #2 , #3 , #4 } with

$#1 : ! = l1 ! ( ( x > 0 ! !’ = l2 ) " ( x " 0 ! !’ = l4 ) ) ! pres( { x , y } )
$#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y
$#3 : ! = l3 ! !’ = l1 ! y’ = y + x ! x’ = x
$#4 : pres( { x , y , ! } )

! : x = 2 ! y = 0 ! ! = l1
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#4
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1. Construct the reachable state space

To prove  y ! x + 2 : 
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Proving invariants by model checking: example

5
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2. Check that all reachable states satisfy    y ! x + 2

To prove  y ! x + 2 : 
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Invariants: example
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local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

 invariants ? 

0 ! x ! 2

0 ! y ! 1

( ! = l4 ) % ( y = 1 )

( ! = l4 ) % ( x = 0 )

y ! x + 1

( ! = l3 ) % x + y = 1

replace by N  or  N-1 ?
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Invariants: example
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 invariants ? 

0 ! x ! N ( ! = l4 ) % ( y = N - 1)

( ! = l4 ) % ( x = 0 )

y ! x + ( N - 1 )

( ! = l3 ) % x + y = 1

How do we check?

0 ! y ! N - 1

Model checking for N = 1, N = 2, N = 3, N = 4, N = 5, ..........

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 
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Proving invariance properties deductively
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( every state of every run of " satisfies p )

To prove that assertion p is an invariant of system "  :

it is sufficient to prove that 

# p holds at the beginning of every run

# p is preserved by every transition #

( proof by induction on the run )

( base case )

( inductive step )

For assertion p

B1.       ! % p

B2.       p ! $# % p’   for all # in T 

 !p ( p is an invariant of " )

B-INV
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Proving invariance properties deductively: example
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local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

x ! N

is an invariant for all
values of N > 0

Proof:

#1 : x ! N ! ......... ! x’ = x ! .......  %  x’ ! N 

#3 : x ! N ! ......... ! x’ = x ! .......  %  x’ ! N 

#4 : x ! N ! ......... ! x’ = x ! .......  %  x’ ! N 

#2 : x ! N ! ......... ! x’ = x - 1 ! .......  %  x’ ! N 

x = N ! y = 0 ! N > 0 ! ! = l1   %  x ! N

(validity of 5 first-order formulas)
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Proving invariance properties deductively: example
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#1 : x " 0 ! ......... ! x’ = x ! .......  %  x’ " 0 

#3 : x " 0 ! ......... ! x’ = x ! .......  %  x’ " 0 

#4 : x " 0 ! ......... ! x’ = x ! .......  %  x’ " 0 

#2 : x " 0 ! ......... ! x’ = x - 1 ! .......  $  x’ " 0 

valid

not valid
valid

valid

invariant to prove:

x " 0

local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

x = N ! y = 0 ! N > 0 ! ! = l1   %  x " 0 valid

Not a proof: 
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what is the problem?
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#2 : x " 0 ! ......... ! x’ = x - 1 ! .......  $  x’ " 0 

inductive hypothesis is too weak

it is not preserved by all transitions

x " 0  is an invariant, but it is not inductive

it cannot be proven deductively directly
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Solution: strengthen the inductive hypothesis
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identify the problem states

remove them by strengthening the inductive hypothesis

( 0 , 0 , l2 ) , ( 0 , 1 , l2 ) , ................

in general:  ( 0 , y , l2 )   for any value of y

x " 0  !  ( ( ! = l2 ) % x > 0 )
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Strengthening by backwards propagation
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if      p(V) ! $#(V,V’) % p(V’)      does not hold identify the largest 
set of states for 
which it does hold

# find the weakest formula q(V)  such that 

q(V) ! $#(V,V’) % p(V’)

holds for all values of V’

represented by the weakest precondition

wpc( # , p ) :  ∀V’ . $#(V,V’) % p(V’) 

q

p
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Strengthening by backwards propagation
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identify the largest 
set of states for 
which it does hold

represented by the weakest precondition

wpc( # , p ) :  ∀V’ . $#(V,V’) % p(V’) 

q

p

all values (assignments, interpretations) of V  

such that

for all values (assignments, interpretations) 
of V’ 

$#(V,V’) % p(V’)    is true
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Strengthening by backwards propagation
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largest set of states 
for which # leads to p

q

p

 ( ∀V’ . $#(V,V’) % p(V’) ) !  $#(V,V’) % p(V’)

wpc( # , p ) 

 ( ∀Z . $#( V, Z ) % p(Z) ) ! $#( V, V’ ) % p(V’)

assertion over V
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Strengthening by backwards propagation
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( ∀Z . $#( V, Z ) % p(Z) )wpc set of states

 ( ∀Z . $#( V, Z ) % p(Z) ) ! $#( V, V’ ) % p(V’)

verification condition valid or not valid

true or false

 ∀V,V’ [ ( ∀Z . $#( V, Z ) % p(Z) ) ! $#( V, V’ ) % p(V’) ]

validity of verification condition
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Strengthening by backwards propagation: example
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failed verification condition: x ( 0 ! $#2 % x’ ( 0

with $#2 : ! = l2 ! !’ = l3 ! x ‘ = x - 1 ! y’ = y

wpc( #2 , x ( 0 ) :  ∀x’,y’,!’ . $#2(x,y,!, x’,y’,!’) % x’ ( 0 

∀x’,y’!’ . ( ! = l2 ! !’ = l3 ! x’ = x - 1 ! y’ = y )  %  x’ ( 0 

can be simplified to ( ! = l2 )  %  x - 1 ( 0 
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Strengthening by backwards propagation
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Two approaches

wpc( # , p ) may not
be inductivewpc( # , p )  is invariant# Prove that 

and use it as a supporting invariant in INC-INV

# Use   p ! wpc( # , p )  as the strengthening in G-INV  

In both cases the verification condition for # is guaranteed 
to be valid, but verification conditions for other transitions 
may now fail

Note: if p is invariant

       then wpc( # , p ) is also invariant for all # ∈ T
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Verification rule INC-INV (incremental invariance)
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For assertion p, q1 .... qn

B1.       ! % p

B2.       p ! q1 ! ....... ! qn ! $# % p’   for all # in T 

 !p ( p is an invariant of " )

B0.       !"#!!$$$$$$!!!"%
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Proving the supporting invariant
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invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

x = N ! y = 0 ! N > 0 ! ! = l1   % ( ( ! = l2 )  %  x  > 0 ) valid

Proof: 

( ! = l2 )  %  x > 0 

#1 : ......... ! ( ( x > 0  ! !’ = l2  ) " 
                ( x ) 0 ! !’ = l4 ) ) ! x’ = x ! .......  % ( ( !’ = l2 )  %  x’ > 0 )  valid

#2 : ......... ! !’ = l3 ! .......  %  ( ( !’ = l2 )  %  x’ > 0 )  valid

#3 : ......... ! !’ = l1 ! .......  %  ( ( !’ = l2 )  %  x’ > 0 )  valid

#4 : ......... ! !’ = ! ! x’ = x ! ......  %  ( ( !’ = l2 )  %  x’ > 0 )  valid
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Strengthening by backwards propagation
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Two approaches

wpc( # , p ) may not
be inductivewpc( # , p )  is invariant# Prove that 

and use it as a supporting invariant in INC-INV

# Use   p ! wpc( # , p )  as the strengthening in G-INV  

In both cases the verification condition for # is guaranteed 
to be valid, but verification conditions for other transitions 
may now fail

Note: if p is invariant

       then wpc( # , p ) is also invariant for all # ∈ T
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Verification rule G-INV (general invariance)
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For assertions *, p

! % *

* ! $# % *’   for all # in T 

!p ( p is an invariant of " )

I1. * % p

I2.

I3.
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Backward propagation does not always work
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invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

( ! = l4 )  %  y = (N2 - N)/2

( ( ! = l4 )  %  y = (N2 - N)/2 ) !  $#1   % ( ( !’ = l4 )  %  y’ = (N2 - N)/2  ) not valid

*

not preserved by #1 :

wpc (  #1 , * ) :  ( ! = l1  ! x = 0 )  %  y = (N2 - N)/2 

*1

CS357D Spring 2007Lecture 4, April 12

Backward propagation does not always work
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invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

( ! = l4 )  %  y = ( N2 - N ) / 2

( ( ! = l1 ! x = 0)  %  y = (N2 - N)/2 ) !  $#3   %  ( !’ = l1 ! x = 0)  %  y’ = (N2 - N)/2 

not valid

*

 *1 : ( ! = l1 ! x = 0)  %  y = ( N2 - N ) / 2 

not preserved by #3 :

wpc( #1 , *1 ) :  *2 not preserved by #2

wpc( #1 , *2 ) :  *3 not preserved by #1
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General schema for backwards propagation
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*

invariant we want to prove: *

not inductive not preserved by #

*1 : * ! wpc( # , * ) not inductive not preserved by #

*2 : *1 ! wpc( # , *1 ) not inductive not preserved by #

*3 : *2 ! wpc( # , *2 ) not inductive not preserved by #

*4 : *3 ! wpc( # , *3 ) not inductive not preserved by #

*n : *n-1 ! wpc( # , *n-1 ) inductive
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Predicate transformers
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* assertion ( predicate ) set of states

Example: x > 0 { 1 , 2 , 3 , 4 , ........  } N

{ ... 0.0001 , ... 0.01 , ... } R

domain

{ 1 , 2 } &$

A predicate transformer is a function that maps 

predicates   into    predicates

sets of states   into    sets of states
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Backwards propagation expressed as a predicate transformer
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Given a predicate *

Conjoin it with the wpc of all transitions that are not preserved

( and a transition system " )

F( * )  =  * ! wpc( #i1 , * ) ! wpc( #i2 , * ) ! ..... ! wpc( #in , * )

To prove * invariant keep applying F to * until we get 

a predicate that is preserved by all transitions (that is inductive)
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Weakest precondition 
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wpc( # , * )

What if * is preserved by # ?

largest set of states from which #
leads to a *-state
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Weakest precondition
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if      p(V) ! $#(V,V’) % p(V’)      does not hold identify the largest 
set of states for 
which it does hold

# find the weakest formula q(V)  such that 

q(V) ! $#(V,V’) % p(V’)

holds for all values of V’

represented by the weakest precondition

wpc( # , p ) :  ∀V’ . $#(V,V’) % p(V’) 

q

p
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Weakest precondition 
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wpc( # , * )

What if * is preserved by # ?

largest set of states from which #
leads to a *-state

wpc( # , * )  must be weaker than  * 

*  % wpc( # , * )

* ! wpc( # , * )  %  *

wpc( # , * )

*

CS357D Spring 2007Lecture 4, April 12

Backwards propagation expressed as a predicate transformer
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Given a predicate *

Conjoin it with the wpc of all transitions that are not preserved

( and a transition system " )

F( * )  =  * ! !#∈T wpc ( # , * )

To prove * invariant keep applying F to * until we get a 

predicate that is preserved by all transitions (that is inductive)

To prove * invariant keep applying F to * until we reach 

a fixed point

F( * )  =  * 
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Fixed points: examples
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f( x:int ) = ⎣x/2⎦ fixed point:     x = 0

f ( 0 ) = 0

f( x:real ) =  x/2 fixed point:     x = 0

f ( 0 ) = 0
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Tarski’s fixed point theorem (1955)
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if F(*) is a monotone function and reductive

F(*) ⊆ *

or

F(*) % *

*1 ⊆ *2 % F(*1) ⊆  F(*2)

or

*1 ⊆ *2 implies F(*1) ⊆  F(*2)

then F has a unique greatest fixed point (gfp) 

that can be obtained by repeated application of F :

gfp ( F ) =  limn%# Fn ( true )
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Fixed points: examples
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f( x:int ) = ⎣x/2⎦ fixed point:     x = 0

f ( 0 ) = 0

f( x:real ) =  x/2 fixed point:     x = 0

f ( 0 ) = 0

fixed point is reached in finitely many function applications,
starting from any value of x

reaching the fixed point from any value x > 0 takes infinitely
many function applications
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Backwards propagation expressed as a predicate transformer
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Given a predicate *

Conjoin it with the wpc of all transitions

F( * )  =  * ! !#∈T wpc ( # , * )

To prove * invariant keep applying F to * until we reach 

a fixed point

F( * )  =  * 

Note: F(true)  = true
true is the greatest fixed point of F
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Backwards propagation expressed as a predicate transformer
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Assertion * is an invariant of system " : < V , ! , T >

if the greatest fixed point of 

F( X )  =  * ! X ! !#∈T wpc ( # , X )

contains !
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Backward propagation does not always work
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invariant to prove:
local x,y: integer where x = N ! y=0 ! N > 0

l1: while x > 0 do [
    l2: x := x - 1 ;
    l3: y := y + x ;
    ]
l4: 

( ! = l4 )  %  y = ( N2 - N ) / 2

*

wpc( #1 , *1 ) :  *2 not preserved by #2

wpc( #1 , *2 ) :  *3 not preserved by #1

does not terminate


