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SPL example

local x,y: integer where x=N A y=0
l;: while x > 0 do [

laz x:=x-1;

l3zy:=y+x;

]

l/.l

d: <V, 0O, T> with

Vi{xint, yiint, m{l, lz, 15, la}}

J:{Tl,Tz,T3,T4}Wifh

O:x=NAy=0Am=1

pu:m=hA((x>0AT=l)V(xc0OAm=1s))Aapres({x,y})
pre:m=Am =3Ax ' =x-1AY =y
ps:m=lAnm =AYy =y +x AX =X

pre tpres({x,y,m})
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Invariants: example

local x,y: integer where x=2 A y=0
l;: while x > 0 do [

laz x:=x-1;

l3zy:=y+x;

]

l/.l

reachable state space:
{(2,00),(2,0,12),(1,0,13),(LL L), (LLI),(0L1s),(0,L1),(01 1)}

some invariants:

0<x<2 (m=lk)—=(y=1) y<x+1
0<y<1 (m=l)—>(x=0) (M=) x+y=1
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Proving invariants by model checking: example

To prove ¥y < x + 2:

1. Construct the reachable state space

O:x=2Ay=0Am=]

J:{T, T2, T3, T4 } with

pu:m=LA((x>0Am=l)v(xc0Aan=ls))Aapres({x,y})
pre:m=Aanm =AX '=x-1AY =y
ps:m=LBAT =LAy =y+xAX =x

pro:pres({x,y,m})
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Proving invariants by model checking: example

To prove ¥y < x + 2:

2. Check that all reachable states satisfy

y<x+2
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Invariants: example

local x,y: intfeger where x = N A y=0 A N >0
l;: while x > 0 do [

laz xi=x-1;

l3zy:=y+x;

]

|1.:

invariants ?
D 0@ @
0Ly (m=l)—>(x=0) (m=b)—-x+y=1

replace by N or N-17?
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Invariants: example

local x,y: infeger where x = N A y=0 AN >0
l;: while x > 0 do [
lar xi=x-1;

Proving invariance properties deductively

To prove that assertion p is an invariant of system ®

( every state of every run of ® satisfies p )

it is sufficient to prove that

( proof by induction on the run )
l3zy:=y+x;
] e p holds at the beginning of every run ( base case )
la: . .
e p is preserved by every transition T (inductive step )
invariants ?
0<x<N (m=le) = (y=N-1) y<x+(N-1) For assertion p B-INV
0<y=<N-1 (m=lL)—>(x=0) (m=lz3)=x+y=1 Bl. O—’p
B2. pApr—p foralTind
How do we check?
. o ®
Model checking for N=1,N=2 N=3,N=4 N=5, ... Lp (pis an invariant of @)
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Proving invariance properties deductively: example

Proving invariance properties deductively: example

; invariant to prove:
local x,y: integer where x = N A y=0 A N> 0 < <N local x,y: integer where x = N A y=0 A N> 0 P
l: while x > 0 do [ - l: while x > 0 do [ x>0
l: X i=x-1; . . . la: X i=x-1;
Iy =y + X ; is an invariant for all sty =y + X ;
] values of N > 0 ]
|4: 14:
Proof: (validity of 5 first-order formulas) Not a PI"OOFZ
x=NAy=0AN>O0AmT=L — x=N x=NAy=0AN>OAmT=L, = x>0 valid
T X SNA e AXZXA - X' =N TLiX 20 A e AX =X A e - x>0 valid
< ! = - g f <L .
T2 i X S NA AX =X =LA x'=N T2:X 20 A e AX =X =1A ... - x">2 0 not valid
T3 X SNA e AX ZXA e - X =N T3 :X 20 A e AX =X A e - X220 valid
To: X SN A e AX=ZXA e - X =N T4 :X 20 A e AX =X A e - X220 valid
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what is the problem? Solution: strengthen the inductive hypothesis
T2 :[X = O[A ... AX =2X=1A ... - x>0 identify the problem states

inductive hypothesis is too weak

it is not preserved by all transitions

X = 0 is an invariant, but it is not inductive

it cannot be proven deductively directly
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(0,0,12),(0,1,12), oo

in general: (0,y,lz) for any value of y

remove them by strengthening the inductive hypothesis

x20 Al((m=1l2)—>x>0)
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Strengthening by backwards propagation

if P(V) A pT(VzVI) - P(V') does not hold identify the largest

set of states for
which it does hold

« find the weakest formula q(V) such that

q(V) A p(V.V') = p(V')

Strengthening by backwards propagation

represented by the weakest precondition identify the largest
set of states for

which it does hold

wpe(T,p): VYV .pd(VV) = p(V)

holds for all values of V' q q
all values (assignments, interpretations) of V
represented by the weakest precondition such that
for all values (assignments, interpretations)
’ ’ ’ P OF V' p
wpe( T, p): VYV . pdAWV) = p(V)
pr(VV') = p(V) s true
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Strengthening by backwards propagation Strengthening by backwards propagation
largest set of states
e s wpc (Vz .pV,Z) = p(2)) set of states
(VV' . p(VVY) = p(V) ) A po(VV) = p(V)
verification condition valid or not valid
wpe(T,p) q
(VZ.pd(V,Z) = p(2)) A PV, V') = p(V)
p validity of verification condition true or false

(VZ.pdV,Z) = p2))|A p V., V') = p(V)
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YWV L(VZ.pdV,Z) = p2)) APV V)= p(V)]
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Strengthening by backwards propagation: example

failed verification condition: X=Z0Aprz—x =20

W|1.h pTZ:ﬂ:lZ/\ﬂ"=I3/\x‘=x_1/\y'=y
WPC( T2 4 X Z o ) : vxl’y,’ﬂl ° pTZ(x/y/ﬂl Xlly,:ﬂl) - XI Z O
Vxym . (m=leAm=Ax=x-1Ay =y) = x>0

can be simplified to (m=1l) &> x-1=20
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Strengthening by backwards propagation

Two approaches

wpc( T, p ) may not

@ Prove that wpc( T, p ) is invariant be inductive

and use it as a supporting invariant in INC-INV

e Use p Awpc(T,p) as the strengthening in G-INV

In both cases the verification condition for T is guaranteed

to be valid, but verification conditions for other transitions
may now fail

Note: if p is invariant

then wpce( T, p ) is also invariant for all T € <
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Verification rule INC-INV (incremental invariance)

Proving the supporting invariant

For assertion p, qi .... gn
BO Oai ... Oan
Bl ©O-p
B2. PAG A woe. AgGnApr—p foralTind
Op (pis an invariant of @)
Lecture 4, April 12 19

CS357D Spring 2007

local x,y: integer where x =N A y=0 AN >0 invariant to prove:

l: while x > 0 do [ (m=1l2) =& x>0

la: x:=x-1;
l32y:=y +x;
|
14:
Proof:
X=NAy=0AN>0Am=L = ((m=1l2) = x >0) valid
T e Al(x>0 Ar=12)V
(x<O0AT=L))AX =X A ... S ((n=1) > x'>0) valid
T2 % e AT =13 A e = ((n'=1) = x'>0) valid
L CIE— AT =zl A - ((mM=1L) = x>0) valid
S VIR AT =T AX =X A . = ((m'=12) = x'>0) valid
Lecture 4, April 12 20
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Strengthening by backwards propagation

Two approaches

wpc( T, p ) may not

@ Prove that wpc( T, p ) is invariant be inductive

and use it as a supporting invariant in INC-INV

e Use p Awpc(T,p) as the strengthening in G-INV

In both cases the verification condition for T is guaranteed
to be valid, but verification conditions for other transitions
may now fail

Note: if p is invariant
then wpce( T, p ) is also invariant for all T € <
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Verification rule G-INV (general invariance)

For assertions @, p

I1. @ —=p

I2. -0

I3. @ Apr— @ foralTind
Op (pis an invariant of ® )
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Backward propagation does not always work

local x,y: integer where x =N A y=0 AN >0 invariant to prove:

l;: while x > 0 do [
laz x:=x-1;
l32y:=y +x; 0]
|

(m=1) = y=(N2-N)/2

14:

not preserved by T; :

((m=l) = y=(N*-N)/2)A pu = ((1'=l) = y =(N>-N)/2 ) not valid

wpc( Ti,@): (m=L Ax=0) = y=(N2-N)/2

(]

Backward propagation does not always work
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local x,y: integer where x =N A y=0 AN >0 invariant to prove:
l;: while x > 0 do [

la: x:=x-1;

l32y:=y +x;

] (%

(m=1) - y=(N2-N)/ 2

14:

@ :(m=LAx=0) > y=(N2-N)/2

not preserved by T3 :

((m=lbAx=0) = y=(N2-N)/2)A p3s = (=L Ax=0) = y =(N2-N)/2
not valid

wpe( Ti, @1) 1 @2 not preserved by T,

wpe( T1, @2): @3 not preserved by Ti
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General schema for backwards propagation

Predicate transformers

invariant we want fo prove:

) not inductive not preserved by T

@1 :@ Awpe(T, @) not inductive not preserved by T

@2 : @1 A wpe(T, @) not inductive not preserved by T

©s3: @2 A wpe( T, @2) not inductive not preserved by T

@4 : @3 A wpe( T, @3) not inductive not preserved by T

@n : @n1 A wpe( T, Pna1 ) inductive

® assertion ( predicate ) set of states domain

Example: x > O £1,2,3,4, . } N
{..0.0001, ..001, ..} R
{1,2} 3.

A predicate transformer is a function that maps

predicates into  predicates

sets of states into sets of states
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Backwards propagation expressed as a predicate transformer

Weakest precondition

Given a predicate @ ( and a transition system @ )

Conjoin it with the wpc of all transitions that are not preserved
F(p) = @Awpe( T, ®)Awpe( Tz, @) A .. A wpe( Tin, @)

To prove @ invariant keep applying <f to ¢ until we get
a predicate that is preserved by all transitions (that is inductive)

largest set of states from which T

wpe( T @) leads to a p-state

What if @ is preserved by T ?
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Weakest precondition

if P(V) A pT(VzVI) - P(V') does not hold identify the largest

set of states for
which it does hold

« find the weakest formula q(V) such that
q(V) A p(V.V') = p(V')

holds for all values of V’ q

represented by the weakest precondition

wpe(T,p): VYV .pdVV) = p(V)
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Weakest precondition

largest set of states from which T

wpe( T @) leads to a p-state

What if @ is preserved by T ?

wpc( T, @ ) must be weaker than wpe( T, @)

©® = wpe(T, @)

@Awpe(T, @) = @
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Backwards propagation expressed as a predicate transformer

Given a predicate @

Conjoin it with the wpc of all transitions Hret-ere—rotpreserved-

( and a transition system @ )

J(@) = cpA/\rerPc(T,cp)

To prove @ invariant keep applying <f to ¢ until we get a
predicate that is preserved by all transitions (that is inductive)

To prove ¢ invariant keep applying </ to @ until we reach
a fixed point

F(p) = @
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Fixed points: examples

f( x:int ) = [x/2] fixed point:  x=0
f(o)=0

f( x:real ) = x/2 fixed point: x=0
£(0)=0
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Tarski’s fixed point theorem (1955)

Fixed points: examples

© < @ 3(W1) = 3(‘%)

or
@1 S @2 implies F (@) € F (2)

if <F () is a monotone function and reductive

then & has a unique greatest fixed point (gfp)
that can be obtained by repeated application of F :

gfp (F ) = limpow F " ( true)
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fixed point: x=0
f(o0)=0

f( x:int ) = Lx/2]

fixed point is reached in finitely many function applications,
starting from any value of x

fixed point: x=0
f(o)=o0

f( x:real ) = x/2

reaching the fixed point from any value x > O takes infinitely
many function applications
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Backwards propagation expressed as a predicate transformer

Given a predicate @

Conjoin it with the wpc of all transitions

J(@) = cpA/\rerPc(T,cp)

To prove @ invariant keep applying < to @ until we reach
a fixed point

JF(p) = @

Note: <F (true) = true
true is the greatest fixed point of <

Lecture 4, April 12 35 CS357D Spring 2007

Backwards propagation expressed as a predicate transformer

Assertion @ is an invariant of system®: <V, 0, J >
if the greatest fixed point of

F(X) = @ A XA N wpe (T, X)

contains ©
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Backward propagation does not always work

local x,y: integer where x = N A y=0 A N> 0
li: while x > 0 do [

invariant to prove:

(m=1) - y=(N2-N)/ 2

laz x:=x-1;
l3:y:=y +x;
]3 Y
14:
wpe( T, @1) 1 @2 not preserved by T:

wpe( T, @2) @ @3 not preserved by T

does not terminate
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