

		Strengthening by bac				
$\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} \mathbf{x}_{\mathbf{x}} $	<	Two approaches				
failed verification condition: $x \ge 0 \land \rho_{\tau 2} \rightarrow x$	- Prove that when	(T D) is invariant	wpc(τ, p) may n			
with $\rho_{\tau 2}$: $\pi = l_2 \land \pi' = l_3 \land x = x - 1 \land$	 Prove that wpc(τ, p) is invariant and use it as a supporting invariant in INC-INV 					
vpc(τ_2 , x ≥ 0) : $\forall x',y',\pi'$. $\rho_{\tau_2}(x,y,\pi, x',y',\pi') \rightarrow$	x′ ≥ 0		τ,p) as the streng	thening in G-INV		
$\forall x', y' \pi'$. ($\pi = l_2 \land \pi' = l_3 \land x' = x - 1 \land y' = y$)	$\rightarrow x' \ge 0$	In both cases the verification condition for τ is guaranteed to be valid, but verification conditions for other transitions may now fail				
can be simplified to $(\pi = l_2) \rightarrow x - 1 \ge$	0	Note: if p is invaria then wpc(τ ,	nt , p) is also invariant	for all $ au \in \mathcal{T}$		
			10			
e 4, April 12 17	CS357D Spring 2007	Lecture 4, April 12	18	CS357D Spring 200		
	CS357D Spring 2007	Proving the supportin		CS357D Spring 200		
ification rule INC-INV (incremental invariance)	CS357D Spring 2007		ng invariant	invariant to prove:		
ification rule INC-INV (incremental invariance) For assertion p, q ₁ q _n	CS357D Spring 2007	Proving the supportin local x,y: integer wher l1: while x > 0 do [ng invariant	1		
ification rule INC-INV (incremental invariance) For assertion p, q1 qn BO. □q1 □qn	CS357D Spring 2007	Proving the supportin local x,y: integer wher	ng invariant	invariant to prove:		
ification rule INC-INV (incremental invariance) For assertion p, q1 qn BO. □q1 □qn B1. Θ → p		Proving the supportin	ng invariant	invariant to prove:		
ification rule INC-INV (incremental invariance) For assertion p, q1 qn BO. □q1 □qn		Proving the supporting local x,y: integer when l1: while x > 0 do [l2: x := x - 1 ; l3: y := y + x ; l4:	ng invariant	invariant to prove:		
ification rule INC-INV (incremental invariance) For assertion p, q1 qn BO. □q1 □qn B1. Θ → p		Proving the supportin	ng invariant re x = N \land y=0 \land N > 0	invariant to prove: (π = l₂) → x > 0		
ification rule INC-INV (incremental invariance) For assertion p, q ₁ q _n BO. \Box q ₁ \Box q _n B1. $\Theta \rightarrow p$ B2. $p \land q_1 \land \dots \land q_n \land p_{\tau} \rightarrow p'$ for a		Proving the support local x,y: integer when l_1 : while x > 0 do [l_2 : x := x - 1 ; l_3 : y := y + x ;] l_4 : Proof: x = N \land y = 0 \land N > 0 \land T ₁ : \land ((x > 0 \land m	$f(\mathbf{x} = \mathbf{N} \land \mathbf{y} = 0 \land \mathbf{N} > 0$	invariant to prove: $(\pi = l_2) \rightarrow x > 0$ $(\rightarrow 0)$ valid		
ification rule INC-INV (incremental invariance) For assertion p, q ₁ q _n BO. \Box q ₁ \Box q _n B1. $\Theta \rightarrow p$ B2. $p \land q_1 \land \dots \land q_n \land p_{\tau} \rightarrow p'$ for a		Proving the supportin local x,y: integer when l_1 : while x > 0 do [l_2 : x := x - 1 ; l_3 : y := y + x ;] l_4 : Proof: x = N \land y = 0 \land N > 0 \land T_1 : \land ((x > 0 \land m (x \leq 0 \land m	ng invariant $\mathbf{re} \mathbf{x} = \mathbf{N} \land \mathbf{y} = 0 \land \mathbf{N} > 0$ $\mathbf{r} = \mathbf{l}_1 \rightarrow ((\mathbf{\pi} = \mathbf{l}_2) \rightarrow \mathbf{x})$ $\mathbf{r}' = \mathbf{l}_2) \lor$	invariant to prove: $(\pi = l_2) \rightarrow x > 0$ $(x > 0) \qquad valid$ $((\pi' = l_2) \rightarrow x' > 0) \qquad valid$		
ification rule INC-INV (incremental invariance) For assertion p, q ₁ q _n BO. \Box q ₁ \Box q _n B1. $\Theta \rightarrow p$ B2. $p \land q_1 \land \dots \land q_n \land p_{\tau} \rightarrow p'$ for a		Proving the supportin local x,y: integer when $l_1:$ while $x > 0$ do [$l_2: x := x - 1;$ $l_3: y := y + x;$] $l_4:$ Proof: $x = N \land y = 0 \land N > 0 \land$ $\tau_1: \dots \land ((x > 0 \land \pi)$ $(x \le 0 \land \pi)$ $\tau_2: \dots \land \pi' = l_3 \land \dots$	$mg \text{ invariant}$ $me = N \land y=0 \land N > 0$ $m = l_1 \rightarrow ((m = l_2) \rightarrow \infty)$ $m' = l_2) \lor$ $m' = l_4) \land x' = x \land \dots \rightarrow 0$	invariant to prove: $(\pi = l_2) \rightarrow x > 0$ $(\pi' = l_2) \rightarrow x' > 0)$ valid $(\pi' = l_2) \rightarrow x' > 0)$ valid $(\pi' = l_2) \rightarrow x' > 0)$ valid		

	ds propagation		Predicate transformer	5		
invariant we want to prove:	φ		φ assertion (pre	edicate) set of states	domain	
φ	not inductive	not preserved by ${f au}$	Example: x > 0	{1,2,3,4,}	Ν	
$\phi_{\mathrm{l}}:\phi\wedgewpc(\textbf{T},\phi)$	not inductive	not preserved by ${f au}$		{ 0.0001 , 0.01 , }	R	
$\phi_{\texttt{2}}:\phi_{\texttt{1}}\wedge\texttt{wpc(}\textbf{T}$, $\phi_{\texttt{1}}$)	not inductive	not preserved by ${f au}$		{1,2}	∑⊳	
$\phi_3:\phi_2\wedge\mbox{wpc(} {\color{red} {\intercal}},\phi_2$)	not inductive	not preserved by ${f au}$				
$\phi_4:\phi_3 \wedge wpc(\tau,\phi_3)$	not inductive	not preserved by ${f \tau}$	A predicate transformer is a function that maps			
			predicates	into predicates		
$\phi_{n}:\phi_{n-1}\wedge$ wpc($ au$, ϕ_{n-1})	inductive		sets of states	into sets of states		
cture 4, April 12	25	CS357D Spring 2007	Lecture 4, April 12	26	CS357D Spring 2007	
Backwards propagation expressed as a predicate transformer Given a predicate φ (and a transition system Φ) Conjoin it with the wpc of all transitions that are not preserved			$\frac{\text{Weakest precondition}}{\text{wpc}(\tau, \phi)} \qquad \begin{array}{l} \text{largest set of states from which } \tau \\ \text{leads to a } \phi \text{-state} \end{array}$			
$\mathcal{F}(\phi) = \phi \land wpc(\tau_{i1}, \phi)$) \wedge wpc(τ_{i2} , ϕ)	\wedge \wedge wpc(τ_{in} , ϕ)	What if ϕ is preser	ved by T ?		
To prove ϕ invariant keep a a predicate that is preserve		-				

