Lecture 4
Preconditions and backward propagation
April 12, 2007
Inttp://cs357d.stanford.edu/
Lecture 4, April 12

```
local x,y: integer where x=2^y=0
1}1\mathrm{ : while }x>0\mathrm{ do [
        I}:x:=x-1
        I
    ]
14:
```

reachable state space:
$\left\{\left(2,0, l_{1}\right),\left(2,0, I_{2}\right),\left(1,0, I_{3}\right),\left(1,1, l_{1}\right),\left(1,1, I_{2}\right),\left(0,1, I_{3}\right),\left(0,1, l_{1}\right),\left(0,1, l_{4}\right)\right\}$
some invariants:

$$
\begin{array}{lll}
0 \leq x \leq 2 & \left(\pi=1_{4}\right) \rightarrow(y=1) & y \leq x+1 \\
0 \leq y \leq 1 & \left(\pi=1_{4}\right) \rightarrow(x=0) & \left(\pi=1_{3}\right) \rightarrow x+y=1
\end{array}
$$

SPL example

local x, y : integer where $x=N \wedge y=0$
 l_{1} : while $x>0$ do [

$1_{2}: x:=x-1$;
$I_{3}: y:=y+x$;
]
$14:$
$\Phi:\langle V, \Theta, \mathcal{T}\rangle$ with
$V:\left\{x:\right.$ int $, y:$ int $\left., \pi:\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\}\right\}$
$\Theta: x=N \wedge y=0 \wedge \pi=l_{1}$
$\mathcal{J}:\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ with
$\rho_{\mathrm{T} 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right) \vee\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\})$
$\rho_{\text {T2 }}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y$
$\rho_{\text {т }}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x$
$\rho_{\text {T } 4}: \operatorname{pres}(\{x, y, \pi\})$

Lecture 4, April 12

Proving invariants by model checking: example

To prove $y \leq x+2$:

1. Construct the reachable state space
$\Theta: x=2 \wedge y=0 \wedge \pi=l_{1}$

$\mathcal{J}:\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right\}$ with

$$
\begin{aligned}
& \rho_{\mathrm{T} 1}: \pi=l_{1} \wedge\left(\left(x>0 \wedge \pi^{\prime}=l_{2}\right) \vee\left(x \leq 0 \wedge \pi^{\prime}=l_{4}\right)\right) \wedge \operatorname{pres}(\{x, y\}) \\
& \rho_{\mathrm{T} 2}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& \rho_{\mathrm{T} 3}: \pi=l_{3} \wedge \pi^{\prime}=l_{1} \wedge y^{\prime}=y+x \wedge x^{\prime}=x \\
& \rho_{\mathrm{T} 4}: \operatorname{pres}(\{x, y, \pi\})
\end{aligned}
$$

Proving invariants by model checking: example

To prove $y \leq x+2$:
2. Check that all reachable states satisfy $y \leq x+2$

Lecture 4, April 12
5
CS357D Spring 2007

Invariants: example

	```local x,y: integer where }x=N\wedgey=0\wedgeN> l I}:x:=x-1  l3:y := y + x ; ] 14:```
invariants?	
$\begin{aligned} & 0 \leq x \leq N \\ & 0 \leq y \leq N-1 \end{aligned}$	$\begin{array}{ll} \left(\pi=l_{4}\right) \rightarrow(y=N-1) & y \leq x+(N-1) \\ \left(\pi=l_{4}\right) \rightarrow(x=0) & \left(\pi=l_{3}\right) \rightarrow x+y=1 \end{array}$
How do we check?	
Model checking for $\mathrm{N}=1, \mathrm{~N}=2, \mathrm{~N}=3, \mathrm{~N}=4, \mathrm{~N}=5, \ldots . . . . .$.	
Lecture 4, April 12	7 CS357D Spring 2007

## Invariants: example

```
local }x,y:\mathrm{ integer where }x=N\wedgey=0\wedgeN>
l
 I l: x:= x - 1;
 I3:y := y + x ;
]
14:
```

invariants?

replace by N or $\mathrm{N}-1$ ?

Lecture 4, April 12	6	CS357D Spring 2007

## Proving invariance properties deductively

To prove that assertion $p$ is an invariant of system $\Phi$ :
( every state of every run of $\Phi$ satisfies $p$ )
it is sufficient to prove that
(proof by induction on the run )

- $p$ holds at the beginning of every run
(base case )
- $p$ is preserved by every transition $T$
(inductive step)

For assertion $p$
B1. $\quad \Theta \rightarrow p$
B2. $\quad P \wedge \rho_{T} \rightarrow p^{\prime} \quad$ for all $T$ in $\mathcal{J}^{2}$
$\square p \quad(p$ is an invariant of $\phi)$

## Proving invariance properties deductively: example

```
local x,y: integer where }x=N\wedgey=0\wedgeN>
1}\mathrm{ : while }x>0\mathrm{ do [
 I2: x := x-1;
 13: y := y + x ;
]
14:
```

Proof: (validity of 5 first-order formulas)

$$
\begin{aligned}
& x=N \wedge y=0 \wedge N>0 \wedge \pi=l_{1} \rightarrow x \leq N \\
& T_{1}: x \leq N \wedge \ldots \ldots . . \wedge x^{\prime}=x \wedge \ldots \ldots \rightarrow x^{\prime} \leq N \\
& T_{2}: x \leq N \wedge \ldots \ldots . . \wedge x^{\prime}=x-1 \wedge \ldots \ldots . . \rightarrow x^{\prime} \leq N \\
& T_{3}: x \leq N \wedge \ldots . . . . . \wedge x^{\prime}=x \wedge \ldots \ldots \rightarrow x^{\prime} \leq N \\
& T_{4}: x \leq N \wedge \ldots . . . . . . \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \leq N
\end{aligned}
$$

## Lecture 4, April 12

 9CS357D Spring 2007
what is the problem?

$\qquad$ $\wedge x^{\prime}=x-1 \wedge \ldots \ldots$. $\rightarrow x^{\prime} \geq 0$
inductive hypothesis is too weak
it is not preserved by all transitions
$x \geq 0$ is an invariant, but it is not inductive
it cannot be proven deductively directly

## Proving invariance properties deductively: example

```
local x,y: integer where }x=N\wedgey=0\wedgeN>
1: while }x>0\mathrm{ do [
 I
 I3: y:= y+x;
]
14:
```

Not a proof:

| $x=N \wedge y=0 \wedge N>0 \wedge \pi=l_{1} \rightarrow x \geq 0$ | valid |
| :--- | :--- | :---: |
| $T_{1}: x \geq 0 \wedge \ldots \ldots . . \wedge x^{\prime}=x \wedge \ldots \ldots \rightarrow x^{\prime} \geq 0$ | valid |
| $T_{2}: x \geq 0 \wedge \ldots \ldots . . \wedge x^{\prime}=x-1 \wedge \ldots \ldots \rightarrow x^{\prime} \geq 0$ | not valid |
| $T_{3}: x \geq 0 \wedge \ldots . . . . . \wedge x^{\prime}=x \wedge \ldots . . . \rightarrow x^{\prime} \geq 0$ | valid |
| $T_{4}: x \geq 0 \wedge \ldots . . . . . \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow x^{\prime} \geq 0$ | valid |
| 10 | cs357D Spring 2007 |

## Solution: strengthen the inductive hypothesis

identify the problem states

$$
\left(0,0, I_{2}\right),\left(0,1, I_{2}\right),
$$

in general: $\left(0, y, I_{2}\right)$ for any value of $y$
remove them by strengthening the inductive hypothesis

$$
x \geq 0 \wedge\left(\left(\pi=l_{2}\right) \rightarrow x>0\right)
$$

## Strengthening by backwards propagation

if $\quad p(V) \wedge \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right) \quad$ does not hold

- find the weakest formula $q(V)$ such that


$$
q(V) \wedge \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)
$$

holds for all values of $\mathrm{V}^{\prime}$
represented by the weakest precondition

$$
w p d(T, p): \forall V^{\prime} \cdot \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)
$$



Lecture 4, April 12	13	CS357D Spring 2007

## Strengthening by backwards propagation



$$
\left(\forall V^{\prime} \cdot \rho_{\mathrm{T}}\left(V^{\prime}, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)\right) \wedge \rho_{\mathrm{T}}\left(V^{\prime} V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)
$$

$$
\mathrm{wpc}(\mathrm{~T}, \mathrm{p})
$$



15

## Strengthening by backwards propagation

represented by the weakest precondition

```
wpc(T, p): \forall\mp@subsup{V}{}{\prime}}.\mp@subsup{\rho}{\textrm{T}}{}(\textrm{V},\mp@subsup{V}{}{\prime})->p(\mp@subsup{V}{}{\prime}
```

all values (assignments, interpretations) of $V$
such that
for all values (assignments, interpretations) of $V^{\prime}$

$$
\rho_{\mathrm{T}}\left(V^{\prime} V^{\prime}\right) \rightarrow p\left(V^{\prime}\right) \quad \text { is true }
$$



## Strengthening by backwards propagation

wpc

$$
\left(\forall Z . \rho_{\mathrm{T}}(\mathrm{~V}, \mathrm{Z}) \rightarrow \mathrm{p}(\mathrm{Z})\right)
$$

set of states
verification condition valid or not valid

$$
\left(\forall z \cdot \rho_{\mathrm{T}}(\mathrm{~V}, \mathrm{Z}) \rightarrow p(\mathrm{Z})\right) \wedge \rho_{\mathrm{T}}\left(\mathrm{~V}, \mathrm{~V}^{\prime}\right) \rightarrow \mathrm{p}\left(\mathrm{~V}^{\prime}\right)
$$

validity of verification condition true or false

$$
\forall V, V^{\prime}\left[\left(\forall z \cdot \rho_{\mathrm{T}}(\mathrm{~V}, \mathrm{z}) \rightarrow \mathrm{p}(Z)\right) \wedge \rho_{\mathrm{T}}\left(\mathrm{~V}^{\prime} \mathrm{V}^{\prime}\right) \rightarrow \mathrm{p}\left(\mathrm{~V}^{\prime}\right)\right]
$$

## Strengthening by backwards propagation: example

$$
\begin{aligned}
& \text { failed verification condition: } \quad x \geq 0 \wedge \rho_{\mathrm{T} 2} \rightarrow x^{\prime} \geq 0 \\
& \text { with } \quad \rho_{\mathrm{T} 2}: \pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y \\
& \text { wpc }\left(T_{2}, x \geq 0\right): \forall x^{\prime}, y^{\prime}, \pi^{\prime} . \rho_{\mathrm{T} 2}\left(x, y, \pi, x^{\prime}, y^{\prime}, \pi^{\prime}\right) \rightarrow x^{\prime} \geq 0 \\
& \forall x^{\prime}, y^{\prime} \pi^{\prime} .\left(\pi=l_{2} \wedge \pi^{\prime}=l_{3} \wedge x^{\prime}=x-1 \wedge y^{\prime}=y\right) \rightarrow x^{\prime} \geq 0 \\
& \text { can be simplified to } \quad\left(\pi=l_{2}\right) \rightarrow x-1 \geq 0
\end{aligned}
$$

## Verification rule INC-INV (incremental invariance)

```
For assertion \(p, q_{1} \ldots . q_{n}\)
BO. \(\square \mathrm{q}_{1} \ldots \square \mathrm{q}_{\mathrm{n}}\)
B1. \(\quad \Theta \rightarrow p\)
B2. \(\quad p \wedge q_{1} \wedge \ldots \ldots . . \wedge q_{n} \wedge \rho_{T} \rightarrow p^{\prime} \quad\) for all \(T\) in \(\mathcal{J}\)
 \(\square p\)
(\(p\) is an invariant of \(\Phi\))
```


## Strengthening by backwards propagation

Two approaches

- Prove that wpc( T, p ) is invariant
wpc( T, p ) may not be inductive and use it as a supporting invariant in INC-INV
- Use $P \wedge w p c(T, P)$ as the strengthening in G-INV

In both cases the verification condition for T is guaranteed to be valid, but verification conditions for other transitions may now fail

Note: if $p$ is invariant
then $w p c(T, P)$ is also invariant for all $T \in T$

## Lecture 4, April 12

## Proving the supporting invariant

Proof:

| $x=N \wedge y=0 \wedge N>0 \wedge \pi=I_{1} \rightarrow\left(\left(\pi=I_{2}\right) \rightarrow x>0\right)$ | valid |
| ---: | ---: | ---: |
| $T_{1}: \ldots \ldots . . \wedge\left(\left(x>0 \wedge \pi^{\prime}=I_{2}\right) \vee\right.$ | valid |
| $\left.\left(x \leq 0 \wedge \pi^{\prime}=I_{4}\right)\right) \wedge x^{\prime}=x \wedge \ldots \ldots . . \rightarrow\left(\left(\pi^{\prime}=l_{2}\right) \rightarrow x^{\prime}>0\right)$ | valid |
| $T_{2}: \ldots \ldots . . \wedge \pi^{\prime}=I_{3} \wedge \ldots \ldots \rightarrow\left(\left(\pi^{\prime}=I_{2}\right) \rightarrow x^{\prime}>0\right)$ | valid |
| $T_{3}: \ldots \ldots . . \wedge \pi^{\prime}=I_{1} \wedge \ldots \ldots . \rightarrow\left(\left(\pi^{\prime}=I_{2}\right) \rightarrow x^{\prime}>0\right)$ | valid |

Lecture 4, April 1220

## Strengthening by backwards propagation

Two approaches

- Prove that wpc( T, p ) is invariant
wpc( $T, p$ ) may not be inductive and use it as a supporting invariant in INC-INV
- Use $\mathrm{P} \wedge \mathrm{wpc}(\mathrm{T}, \mathrm{P})$ as the strengthening in G-INV

In both cases the verification condition for T is guaranteed to be valid, but verification conditions for other transitions may now fail

Note: if $p$ is invariant
then $\operatorname{wpc}(T, P)$ is also invariant for all $T \in \mathcal{T}$

Lecture 4, April 12	21	CS357D Spring 2007

## Backward propagation does not always work

```
local x,y: integer where }x=N\wedgey=0\wedgeN>
1}\mathrm{ : while }x>0\mathrm{ do [
 I2: x := x-1;
 3: y:= y+x;
]
14:
```

not preserved by $T_{1}$ :

$$
\left(\left(\pi=I_{4}\right) \rightarrow y=\left(N^{2}-N\right) / 2\right) \wedge \rho_{T 1} \rightarrow\left(\left(\pi^{\prime}=I_{4}\right) \rightarrow y^{\prime}=\left(N^{2}-N\right) / 2\right) \quad \text { not valid }
$$

$$
\operatorname{wpc}\left(T_{1}, \varphi\right):\left(\pi=l_{1} \wedge x=0\right) \rightarrow y=\left(N^{2}-N\right) / 2
$$

$$
\varphi_{1}
$$

Lecture 4, April 12	23	CS357D Spring 2007

## Verification rule G-INV (general invariance)

For assertions $\varphi, p$
I1. $\quad \varphi \rightarrow p$
I2. $\quad \Theta \rightarrow \varphi$
I3. $\varphi \wedge \rho_{T} \rightarrow \varphi^{\prime} \quad$ for all $T$ in $\mathcal{J}$
$\square p \quad(p$ is an invariant of $\Phi)$

## Lecture 4, April 12

## Backward propagation does not always work

local $x, y:$ integer where $x=N \wedge y=0 \wedge N>0$   $I_{1}:$ while $x>0$ do $[$   $I_{2}: x:=x-1 ;$   $I_{3}: y:=y+x ;$   $]$
Invariant to prove:   $\left(\pi=I_{4}\right) \rightarrow y=\left(N^{2}-N\right) / 2$

$$
\varphi_{1}:\left(\pi=l_{1} \wedge x=0\right) \rightarrow y=\left(N^{2}-N\right) / 2
$$

not preserved by $T_{3}$ :

$$
\left(\left(\pi=l_{1} \wedge x=0\right) \rightarrow y=\left(N^{2}-N\right) / 2\right) \wedge \rho_{T 3} \rightarrow\left(\pi^{\prime}=l_{1} \wedge x=0\right) \rightarrow y^{\prime}=\left(N^{2}-N\right) / 2
$$

$$
\begin{array}{ll}
\operatorname{wpc}\left(T_{1}, \varphi_{1}\right): \varphi_{2} & \text { not preserved by } T_{2} \\
\operatorname{wpc}\left(T_{1}, \varphi_{2}\right): \varphi_{3} & \text { not preserved by } T_{1}
\end{array}
$$

Lecture 4, April $12 \quad 24 \quad$ CS357D Spring 2007

## General schema for backwards propagation

$\varphi$	not inductive	not preserved by $\mathbf{T}$
$\varphi_{1}: \varphi \wedge \operatorname{wpc}(\mathbf{T}, \varphi)$	not inductive	not preserved by $T$
$\varphi_{2}: \varphi_{1} \wedge \operatorname{wpc}\left(\mathbf{T}, \varphi_{1}\right)$	not inductive	not preserved by $T$
$\varphi_{3}: \varphi_{2} \wedge \operatorname{wpc}\left(\mathrm{~T}, \varphi_{2}\right)$	not inductive	not preserved by $T$
$\varphi_{4}: \varphi_{3} \wedge \operatorname{wpc}\left(\mathbf{T}, \varphi_{3}\right)$	not inductive	not preserved by T
$\varphi_{\mathrm{n}}: \varphi_{\mathrm{n}-1} \wedge \operatorname{wpc}\left(\mathrm{~T}, \varphi_{\mathrm{n}-1}\right)$	inductive	
Lecture 4, April 12	25	CS357D Spring 2007
Backwards propagation expressed as a predicate transformer		
Given a predicate $\varphi$   Conjoin it with the wpc of $\mathcal{F}(\varphi)=\varphi \wedge \omega p c\left(T_{i 1}, \varphi\right.$   To prove $\varphi$ invariant keep a predicate that is preserved	a transition transitions th $\operatorname{wpc}\left(\mathrm{T}_{\mathrm{i} 2}, \varphi\right.$   lying to $\varphi$ by all transiti	em $\Phi$ )   are not preserved   ..... $\wedge \operatorname{wpc}\left(\mathrm{T}_{\mathrm{in}}, \varphi\right)$   il we get (that is inductive)
Lecture 4, April 12	27	CS357D Spring 2007

## Predicate transformers

$\varphi$ assertion (predicate) set of states domain

Example: $x>0$

$\{1,2,3,4, \ldots . . .\}$.	$N$
$\{\ldots 0.0001, \ldots 0.01, \ldots\}$	$R$
$\{1,2\}$	$\Sigma$

A predicate transformer is a function that maps
predicates into predicates
sets of states into sets of states

Lecture 4, April 12	26	CS357D Spring 2007

## Weakest precondition

```
wpc(T , \varphi)
```

largest set of states from which $T$ leads to a $\varphi$-state

What if $\varphi$ is preserved by $T$ ?

## Weakest precondition

if $\quad p(V) \wedge \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right) \quad$ does not hold

- find the weakest formula $q(V)$ such that

$$
q(V) \wedge \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)
$$

holds for all values of $\mathrm{V}^{\prime}$
represented by the weakest precondition

$$
w p c(T, p): \forall V^{\prime} . \rho_{T}\left(V, V^{\prime}\right) \rightarrow p\left(V^{\prime}\right)
$$



Lecture 4, April 12

## Backwards propagation expressed as a predicate transformer

Given a predicate $\varphi \quad$ ( and a transition system $\Phi$ )
Conjoin it with the wpc of all transitions that preserved

$$
\mathscr{F}(\varphi)=\varphi \wedge \bigwedge_{\tau \in \mathcal{J} w p c}(\tau, \varphi)
$$

To prove $\varphi$ invariant keep applying to $\varphi$ until we get a predicate that is preserved by all transitions (that is inductive)

To prove $\varphi$ invariant keep applying to $\varphi$ until we reach a fixed point

$$
\mathscr{F}(\varphi)=\varphi
$$



## Fixed points: examples

$$
f(x: \operatorname{int})=\lfloor x / 2\rfloor
$$

$$
\text { fixed point: } \quad x=0
$$

$$
f(0)=0
$$

fixed point is reached in finitely many function applications, starting from any value of $x$

$$
f(x \text { :real })=x / 2 \quad \text { fixed point: } \quad x=0
$$

$$
f(0)=0
$$

reaching the fixed point from any value $x>0$ takes infinitely many function applications

Lecture 4, April 12	34	CS357D Spring 2007

## Backwards propagation expressed as a predicate transformer

Assertion $\varphi$ is an invariant of system $\Phi:\langle V, \Theta, \mathcal{T}\rangle$ if the greatest fixed point of

$$
\mathscr{F}(X)=\varphi \wedge X \wedge \bigwedge_{T \in \mathcal{T}} w p c(T, X)
$$

contains $\Theta$

Backward propagation does not always work


