	Abstraction of Physical Systems
CS 357 D	Abstraction enables us to do system analysis in one domain and carry over the results into a different domain
Lecture 7	Common abstraction:
Abstract Interpretation Introduction	Physical system modeling Mathematical model we analyze a mathematical model of the system and assume that the physical system behaves similarly.
<u>http://cs357d.stanford.edu</u> / April 24, 2007	the justification that analysis results can indeed be carried over is necessarily informal, since we cannot establish a formal correspondence between the physical system and the mathematical model; we rely on domain experts and experimentation
Lecture 7, April 24 CS357D Spring 2007	Lecture 7, April 24 2 C\$357D Spring 2007
Mathematical Abstraction	Abstract Interpretation (Cousot&Cousot 1977)
(concrete) Mathematical model modeling modeling (abstract) Mathematical model we analyze a, usually simpler, mathematical model of the system and conclude that the more complex model has the same properties.	The theory of abstract interpretation was introduced by Cousot and Cousot (POPL'77); it has been and still is being used in many different settings, ranging from compiler optimization to language semantics analysis, formal verification, and theorem proving. From the POPL'77 paper:
In this case, property preservation can be formally justified since we can define a formal relationship between the two models. Here we will be concerned only with this type of abstraction, and in particular with abstract interpretation, the theory that relates the semantics of systems in different domains.	"A program denotes computations in some universe of objects. Abstract interpretation of programs consists in using that denotation to describe computations in another universe of abstract objects, so that the results of abstract execution give some information about the actual computations."
Lecture 7, April 24 3 CS357D Spring 2007	Lecture 7, April 24 ⁴ CS357D Spring 2007

Abstract Interpretation -- more quotes

Cousot & Cousot, Journal of Logic and Computation, 1992:

"Abstract interpretation is a method for designing approximate semantics of programs which can be used to gather information about programs in order to provide sound answers to questions about their runtime behaviors. These semantics can then be used to design manual proof methods or to specify automatic program analyses."

5

Abstract interpretation -- more quotes

Cousot & Cousot, 1992:

"Theoretical point of view: The purpose of abstract interpretation is to design hierarchies of interrelated semantics at various levels of detail."

"Practical point of view: The purpose of abstract interpretation is to design automatic program analysis tools for determining statically dynamic properties of programs."

6

Lecture 7, April 24

CS357D Spring 2007

Abstract interpretation -- basics

Given:

Lecture 7, April 24

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

We have to choose / construct :

1. Abstract domain

2.Correspondence between abstract and concrete objects

3.Abstract semantics

Abstract interpretation -- basics

Given:

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

Lecture 7, April 24

CS357D Spring 2007

Abstract interpretation a simple example	Abstract interpretation	on basics			
Concrete system : multiplication of integers	We have to choose /	construct :			
Question : are the results of these multiplications less than, equal to, or greater than zero?	 Abstract domain Correspondence between abstract and concrete objects Abstract semantics 				
Concrete domain: sets of integers $\Sigma = 2^{Z}$	J.Abstract senam				
Extend the semantics of multiplication to multiplication of sets:					
$S_1 \times S_2 = \{ n \mid \exists n_1 \in S_1 , n_2 \in S_2 . n_1 \times n_2 = n \}$					
Example: {1,2}x{3,4} = {3,4,6,8}					
Lecture 7, April 24 9 CS357D Spring 2007	Lecture 7, April 24	10	CS357D Spring 2007		
Abstract interpretation a simple example	Abstract interpretation	on a simple example			
Question : are the results of these multiplications less than, equal to, or greater than zero?	Question : are les	e the results of these mul is than, equal to, or greate	tiplications er than zero?		
1. Abstract domain: $\Sigma_A = \{ neg , zero , pos \}$	1. Abstract domain:	Σ _A = { neg , zero , pos }			
		$\Sigma_A = \{ -1 , 0 , 1 \}$			
		$\Sigma_A = \{ :: : :: , :: : :: : , :$	r::::}}		
		$\Sigma_A = \{ b, b, \pm, \pm \}$			
		$\Sigma_{A} = \{ (2, \mathbf{A}), (2, \mathbf{A}) \}$			
		Σ _A = { 曾 , 単 , ② }			
Lecture 7, April 24 II CS357D Spring 2007	Lecture 7, April 24	12	CS357D Spring 2007		

sion of multiplicati	on	
e multiplication:	$x_c : \Sigma \times \Sigma$	$\rightarrow \Sigma$
le: $\{1, 2\} \times_{C} \{3\}$, 4 } = { 3 , 4 ,	6,8}
multiplication:	$x_A : \Sigma_A \times \Sigma_A$	$_{A} \rightarrow \Sigma_{A}$
	e multiplication: le: {1,2}x _c {3 multiplication:	e multiplication: $x_c : \Sigma \times \Sigma$ le: {1,2} x_c {3,4} = {3,4, multiplication: $x_A : \Sigma_A \times \Sigma_A$

Abstract version of multiplication

Abstract multiplication: $x_A : \Sigma_A \times \Sigma_A \to \Sigma_A$

	XA	T	neg	zero	pos	т	
	T	T	Т	Т	T	1	
	neg	\bot	pos	zero	neg	т	
	zero	\bot	zero	zero	zero	zero	
	pos	\perp	neg	zero	pos	т	
	т	\perp	Т	zero	т	т	
Lecture 7, April 24				25			CS357D Spring 2007

Abstract analysis

Concrete question:	$n_1 \times n_2 \stackrel{>}{=} ? 0$	
Procedure:		
Abstract n_1 and n_2 :	$n_1^A = \alpha (\{ n_1 \})$	$n_2^A = \alpha (\{n_2\})$
Perform abstract mu	ltiplication : n ^A = n ₁ ^A	$x^A n_2^A$
Concretize n ^A :	S = Υ (n ^A)	
if $S = Z^+$ the	$n_1 \times n_2 > 0$	
if S = Z⁻ the	$n_1 \times n_2 < 0$	
if $S = \{ 0 \}$ the	$n_1 \times n_2 = 0$	
if S = Z the	en we don't know	
Lecture 7, April 24	26	CS357D Spring 2007

Abstract analysis Examp	ble
n ₁ = 783,422 n ₂ = 409,312	$n_1 \times n_2 \stackrel{>}{\underset{<}{\stackrel{=}{=}}} 0$
Abstract n_1 and n_2 :	$n_1^A = \alpha (\{n_1\}) = pos$ $n_2^A = \alpha (\{n_2\}) = pos$
Perform abstract multiplie	cation : n ^A = n ₁ ^A x ^A n ₂ ^A = pos x ^A pos = pos
Concretize n^A : $S = \Upsilon$ ($(n^{A}) = Z^{+}$
if S = Z ⁺ then	$n_1 \times n_2 > 0$
Conclude: 783,422 x 409	9,312 > 0

Abstract analysis -- Observations

- The choice of abstract domain was governed by the question. If the question had been to determine whether the result was even or odd, we would have chosen a different abstract domain and abstract semantics.
- The concrete domain is a partially ordered set with the subset relation \subseteq as order.
- We can also impose an order $<^A$ on the abstract domain:

Abstract analysis -- Observations • α and Υ are both monotone: Т $S_1 \subseteq S_2 \rightarrow \alpha(S_1) \leq^A \alpha(S_2)$ zero neq pos $a_1 \leq^A a_2 \rightarrow \Upsilon(a_1) \subseteq \Upsilon(a_2)$ Example: $\Upsilon(\perp) = \emptyset$ zero <^A T Υ (neg) = { n \in Z | n < 0 } = Z⁻ $\Upsilon(\text{zero}) = \{0\}$ Υ (zero) = {0} $\Upsilon(T) = Z$ Υ (pos) = { n \in Z | n > 0 } = Z⁺ $\{0\} \subseteq Z$ $\Upsilon(T) = Z$

30

Abstract analysis -- Observations

• The result of abstraction followed by concretization is something larger:

Abstract analysis -- Observations

• The result of concretization followed by abstraction is the same object:

$$\alpha(\Upsilon(a)) = a$$

Example:

a = pos Υ(a) = Z⁺ α(Υ(a)) = pos

Lecture 7, April 24

32

CS357D Spring 2007

Abstract analysis -- Observations

 $\Upsilon(a_1) \times \Upsilon(a_2) = \Upsilon(a_1 \times^A a_2)$

Example:

$$\Upsilon(\text{neg}) \times \Upsilon(\text{zero}) = Z^{-} \times \{0\} = \{0\}$$

Lecture 7, April 24	35			zero neg T zero zero zero zero pos T zero T T ccs357D Spring 2007		2007
	т	T	Т	zero	Т	Т
	pos	\bot	neg	zero	pos	т
	zero	\bot	zero	zero	zero	zero
	neg	\bot	pos	zero	neg	Т
Y(zero) = { 0 }	⊥	T	\perp	\bot	\bot	\bot
neg x ^A zero = zero	XA	\perp	neg	zero	pos	Т

Abstract analysis Observa	ations					
Υ(a ₁) × Υ(a2) =	Υ(α 1	x ^a a ₂)			
Example:						
$\Upsilon(\text{ pos }) \times \Upsilon(\text{ pos }) = Z^+$	κ Ζ+	= Z+				
pos x ^A pos = pos	XA	T	neg	zero	pos	Т
Ύ(pos) = Z ⁺	Ŧ	T	T	T	\bot	T
	neg	Ť	pos	zero	neg	Т
	zero	Т	zero	zero	zero	zero

pos

Т

34

 \bot

 \bot

neq

Т

zero

zero

Galois connection Let (Σ_A, \leq^A) and (Σ, \subseteq) be partially ordered sets. A pair (α, Υ) is a Galois connection if the following hold: (1) $\alpha : \Sigma \to \Sigma_A$ and $\Upsilon : \Sigma_A \to \Sigma$ (2) α and Υ are monotone (3) $S \subseteq \Upsilon(\alpha(S))$ for all $S \in \Sigma$ and $\alpha(\Upsilon(a)) \leq^A a$ for all $a \in \Sigma_A$

Note: if $\alpha(\Upsilon(a)) = a$ then (α, Υ) is called a Galois insertion

Lecture 7, April 24

CS357D Spring 2007

Т

Т

pos

Т

CS357D Spring 2007

Galois connection

The functions α and Υ determine each other: if one is given, the other follows

Given Υ :

```
\alpha(~S ) is the smallest object in \Sigma_A that represents all of S :
```

 $\begin{aligned} \alpha(S) &= \inf \{ a \in \Sigma_A \mid S \subseteq \Upsilon(a) \} \\ &= \mathsf{n}^A \{ a \in \Sigma_A \mid S \subseteq \Upsilon(a) \} \quad (\mathsf{meet}) \end{aligned}$

Example: S = { 3 , 4 }

 $S \subseteq \Upsilon(T)$ $S \subseteq \Upsilon(pos)$ $\alpha(\{3,4\}) = \inf\{pos,T\} = pos$

37

Lecture 7, April 24

CS357D Spring 2007

Galois connection

The functions α and Υ determine each other: if one is given, the other follows

Given α :

 $\Upsilon(a$) is the largest object in Σ that is fully described by a :

$$\begin{split} \Upsilon(a) &= \sup \{ S \in \Sigma \mid \alpha(S) \leq^{A} a \} \\ &= U \{ S \in \Sigma \mid \alpha(S) \leq^{A} a \} \\ \text{Example:} \quad \alpha(\{3,4\}) \leq^{A} \text{ pos} \\ \quad \alpha(\{17,32,42\}) \leq^{A} \text{ pos} \\ \dots \\ \Upsilon(\text{ pos}) &= \{3,4\} \cup \{17,32,42\} \cup \dots \\ \text{For equation 1} = Z^{+} \end{split}$$

Galois connection

Given Υ :

 α (S) is the smallest object in Σ_A that represents all of S:

 $\begin{aligned} \alpha(S) &= \inf \{ a \in \Sigma_A \mid S \subseteq \Upsilon(a) \} \\ &= \mathbf{n}^{\mathbf{A}} \{ a \in \Sigma_A \mid S \subseteq \Upsilon(a) \} \text{ (meet)} \end{aligned}$

Given α :

 $\Upsilon(a)$ is the largest object in Σ that is fully described by a :

$$\begin{split} \Upsilon(a) &= \sup \left\{ \begin{array}{l} S \in \Sigma \mid \alpha(S) \\ &= \end{array} \right\} \\ &= \left. \begin{array}{l} \textbf{U} \\ \left\{ \begin{array}{l} S \in \Sigma \mid \alpha(S) \\ &\leq^{A} \end{array} \right\} \\ &= \end{array} \right\} \end{split} (join) \end{split}$$