CS 357 D

Lecture 7

Abstract Interpretation

Introduction

http://cs357d.stanford.edu/

April 24, 2007

Lecture 7, April 24	I	CS357D Spring 2007

Mathematical Abstraction

(abstract) Mathematical model

we analyze a, usually simpler, mathematical model of the system and conclude that the more complex model has the same properties.

In this case, property preservation can be formally justified since we can define a formal relationship between the two models.

Here we will be concerned only with this type of abstraction, and in particular with abstract interpretation, the theory that relates the semantics of systems in different domains.

Abstract Interpretation -- more quotes

Cousot \& Cousot, Journal of Logic and Computation, 1992:
"Abstract interpretation is a method for designing approximate semantics of programs which can be used to gather information about programs in order to provide sound answers to questions about their runtime behaviors. These semantics can then be used to design manual proof methods or to specify automatic program analyses."

Lecture 7, April 24	5	CS357D Spring 2007

Abstract interpretation -- basics

Given:

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

We have to choose / construct :

1. Abstract domain
2.Correspondence between abstract and concrete objects
3.Abstract semantics

Abstract interpretation -- more quotes

Cousot \& Cousot, 1992:
"Theoretical point of view: The purpose of abstract interpretation is to design hierarchies of interrelated semantics at various levels of detail."
"Practical point of view: The purpose of abstract interpretation is to design automatic program analysis tools for determining statically dynamic properties of programs."

Lecture 7, April 24	6	CS357D Spring 2007

Abstract interpretation -- basics

Given:

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

Abstract interpretation－－a simple example

Concrete system ：multiplication of integers

Questionare the results of these multiplications less than，equal to，or greater than zero？
Concrete domain：sets of integers $\quad \Sigma=2^{z}$
Extend the semantics of multiplication to multiplication of sets：
$\qquad S_{1} \times S_{2}=\left\{n \mid \exists n_{1} \in S_{1}, n_{2} \in S_{2} . n_{1} \times n_{2}=n\right\}$
Example：$\{1,2\} \times\{3,4\}=\{3,4,6,8\}$
Lecture 7, April 24

Abstract interpretation－－basics

We have to choose／construct ：

1．Abstract domain
2．Correspondence between abstract and concrete objects
3．Abstract semantics

Lecture 7，April 24	10	CS357D Spring 2007

Abstract interpretation－－a simple example

Question | are the results of these multiplications |
| :--- |
| less than，equal to，or greater than zero |

1．Abstract domain：$\quad \Sigma_{A}=\{$ neg，zero，pos $\}$

$$
\begin{aligned}
& \Sigma_{A}=\{-1,0,1\} \\
& \Sigma_{A}=\{\because \cdot:: \quad: \because \because \because, \quad \because \because:\} \\
& \Sigma_{A}=\{b, \square, \#\} \\
& \Sigma_{A}=\left\{\text { 涼 }^{\infty} \omega, ~ D\right\} \\
& \Sigma_{A}=\{\text { 果, 兑, 论 }\}
\end{aligned}
$$

Abstract interpretation -- a simple example

Question : are the results of these multiplications less than, equal to, or greater than zero?

1. Abstract domain: $\quad \Sigma_{A}=\{$ neg, zero, pos $\}$

Concretization function

maps abstract objects to concrete objects
gives meaning to the abstract objects

```
Y(neg)}={n\inZ|n<0
\gamma(zero ) = {0}
\gamma(pos)={n\inZ| n>0}
```


Abstraction function

$$
\alpha: \Sigma \rightarrow \Sigma_{A}
$$

maps concrete objects into abstract objects

| $\alpha(\{0\})$ | $=$ zero | |
| :--- | :--- | :--- | :--- |
| $\alpha(S)$ | $=$ neg \quad if $\quad \forall n \in S . n<0$ | |
| $\alpha(S)$ | $=$ pos \quad if $\quad \forall n \in S . n>0$ | |
| $\alpha(S)$ | $=T$ | otherwise |

introduce new abstract object

 T (top) with meaning$r(T)=Z$

Lecture 7, April 24	17	CS357D Spring 2007

Abstraction function

maps concrete objects into abstract objects

$$
\begin{array}{llll}
\alpha(S) & =\perp & \text { if } S=\varnothing \\
\alpha(\{0\})=\text { zero } & & \\
\alpha(S)=\text { neg } & \text { if } \quad \forall n \in S . n<0 \\
\alpha(S)=\text { pos } & \text { if } \quad \forall n \in S . n>0 \\
\alpha(S)=T & & \text { otherwise }
\end{array}
$$

19

Abstraction function

maps concrete objects into abstract objects

$\alpha(\mathrm{S})=$ neg	$\begin{array}{ll}\text { if } & \forall n \in S . n<0 \\ \text { if } & \forall n \in S . n>0\end{array}$	
$\alpha(S)=p o s$		
$\begin{aligned} & \alpha(\mathrm{S})=\perp \\ & \alpha(\mathrm{S})=\mathrm{T} \end{aligned}$	if $S=\varnothing$ otherwise	for symmetry also add new abstract object \perp (bottom) with meaning $\gamma(\perp)=\varnothing$

Lecture 7, April 24	18	CS357D Spring 2007

Concretization function

maps abstract objects to concrete objects gives meaning to the abstract objects

$$
\begin{aligned}
& r(\perp)=\varnothing \\
& r(\text { neg })=\{n \in z \mid n<0\} \\
& r(\text { zero })=\{0\} \\
& r(\text { pos })=\{n \in z \mid n>0\} \\
& r(T)=z
\end{aligned}
$$

Lecture 7, April $24 \quad 20 \quad$ CS357D Spring 2007

Abstraction and Concretization function

abstraction

concretization
$\gamma(\perp)=\varnothing$
$Y($ neg $)=\{n \in Z \mid n<0\}=Z^{-}$
$\gamma($ zero $)=\{0\}$
$\Upsilon(p o s)=\{n \in Z \mid n>0\}=Z^{+}$
$\gamma(T)=Z$

21
CS357D Spring 2007

Concretization function

Abstraction function

Abstract version of multiplication

$$
\begin{aligned}
& \text { Concrete multiplication: } \quad x_{c}: \Sigma \times \Sigma \rightarrow \Sigma \\
& \text { Example: }\{1,2\} x_{c}\{3,4\}=\{3,4,6,8\}
\end{aligned}
$$

$$
\text { Abstract multiplication: } \quad x_{A}: \Sigma_{A} \times \Sigma_{A} \rightarrow \Sigma_{A}
$$

Abstract version of multiplication

X_{A}	\perp	neg	zero	pos	T
\perp	\perp	\perp	\perp	\perp	\perp
neg	\perp	pos	zero	neg	T
zero	\perp	zero	zero	zero	zero
pos	\perp	neg	zero	pos	T
T	\perp	T	zero	T	T

Lecture 7, April 24
Abstract analysis -- Example

$$
\begin{aligned}
& \mathrm{n}_{1}=783,422 \\
& \mathrm{n}_{2}=409,312 \\
& \mathrm{n}_{1} \times \mathrm{n}_{2} \stackrel{\geq}{=} ? 0 \\
& \text { Abstract } n_{1} \text { and } n_{2}: \quad n_{1}{ }^{A}=\alpha\left(\left\{n_{1}\right\}\right)=\operatorname{pos} \\
& n_{2}{ }^{A}=\alpha\left(\left\{n_{2}\right\}\right)=\operatorname{pos} \\
& \text { Perform abstract multiplication: } \quad n^{A}=n_{1}{ }^{A} x^{A} n_{2}{ }^{A} \\
& =\operatorname{pos} x^{A} \text { pos }=\text { pos } \\
& \text { Concretize } n^{A}: \quad S=Y\left(n^{A}\right)=Z^{+} \\
& \text {if } S=Z^{+} \quad \text { then } \quad n_{1} \times n_{2}>0
\end{aligned}
$$

Conclude: $783,422 \times 409,312>0$

Abstract analysis

Concrete question:
$\mathrm{n}_{1} \times \mathrm{n}_{2} \stackrel{>}{=} ? 0$

Procedure:
Abstract n_{1} and $n_{2}: \quad n_{1}^{A}=\alpha\left(\left\{n_{1}\right\}\right) \quad n_{2}^{A}=\alpha\left(\left\{n_{2}\right\}\right)$
Perform abstract multiplication: $\quad n^{A}=n_{1}^{A} x^{A} n_{2}^{A}$
Concretize $n^{A}: \quad S=Y\left(n^{A}\right)$

if $S=Z^{+}$	then	$n_{1} \times n_{2}>0$
if $S=Z^{-}$	then	$n_{1} \times n_{2}<0$
if $S=\{0\}$	then	$n_{1} \times n_{2}=0$
if $S=Z$	then	we don't know

Lecture 7, April 24
26

Abstract analysis -- Observations

- The choice of abstract domain was governed by the question. If the question had been to determine whether the result was even or odd, we would have chosen a different abstract domain and abstract semantics.
- The concrete domain is a partially ordered set with the subset relation \subseteq as order.
- We can also impose an order $<^{A}$ on the abstract domain:

Lecture 7, April 24
28

Abstract analysis -- Observations

- α and γ are both monotone:

$$
\begin{aligned}
& S_{1} \subseteq S_{2} \rightarrow \alpha\left(S_{1}\right) \leq^{A} \alpha\left(S_{2}\right) \\
& a_{1} \leq^{A} a_{2} \rightarrow \gamma\left(a_{1}\right) \subseteq Y\left(a_{2}\right)
\end{aligned}
$$

Example:

$$
\begin{array}{lll}
\{0\} \subseteq\{0,1,2\} & \alpha(S)=\perp & \text { if } S=\varnothing \\
\alpha(\{0\})=\text { zero } & \alpha(\{0\})=\text { zero } & \\
\alpha(\{0,1,2\})=T & \alpha(S)=\text { neg } & \text { if } \forall n \in S \cdot n<0 \\
\text { zero }<A T & \alpha(S)=\text { pos } & \text { if } \forall n \in S \cdot n>0 \\
& \alpha(S)=T & \text { otherwise }
\end{array}
$$

Abstract analysis -- Observations

- The result of abstraction followed by concretization is something larger:
$S \subseteq \gamma(\alpha(S))$
Example:

$$
\begin{aligned}
& S=\{3,4\} \\
& \alpha(S)=\operatorname{pos} \\
& Y(\alpha(S))=\Upsilon(\text { pos })=Z^{+} \\
& \{3,4\} \subseteq Z^{+}
\end{aligned}
$$

Abstract analysis -- Observations

- α and γ are both monotone:

Example:

$$
\begin{array}{ll}
\text { zero }<A T & \Upsilon(\perp)=\varnothing \\
Y(\text { zero })=\{0\} & Y(\text { neg })=\{n \in z \mid n<0\}=Z^{-} \\
Y(T)=Z & Y(\text { zero })=\{0\} \\
\{0\} \subseteq Z & Y(\text { pos })=\{n \in z \mid n>0\}=Z^{+} \\
\text {z } \subseteq & Y(T)=z
\end{array}
$$

Lecture 7, April 24	30	CS357D Spring 2007

Abstract analysis -- Observations

- The result of concretization followed by abstraction is the same object:

$$
\alpha(\gamma(a))=a
$$

Example:

$$
\begin{aligned}
& a=p o s \\
& Y(a)=Z^{+} \\
& \alpha(Y(a))=\operatorname{pos}
\end{aligned}
$$

Abstract analysis -- Observations

- Abstract multiplication over-approximates

$$
Y\left(a_{1}\right) \times Y\left(a_{2}\right) \subseteq Y\left(a_{1} x^{A} a_{2}\right)
$$

X_{A}	\perp	neg	zero	pos	T
\perp	\perp	\perp	\perp	\perp	\perp
neg	\perp	pos	zero	neg	T
zero	\perp	zero	zero	zero	zero
pos	\perp	neg	zero	pos	T
T	\perp	T	zero	T	T

Lecture 7, April 24
33
CS357D Spring 2007

Abstract analysis -- Observations

$$
Y\left(a_{1}\right) \times Y\left(a_{2}\right)=Y\left(a_{1} x^{A} a_{2}\right)
$$

Example:

$$
\begin{array}{lllllll}
Y(\text { neg }) \times Y(\text { zero })= & Z^{-} & \times\{0\} & =\{0\} \\
\text { neg } x^{A} \text { zero }=\text { zero } & & x_{A} & \perp & \text { neg } & \text { zero } & \text { pos }
\end{array} \mathrm{T}
$$

Lecture 7, April 24
35

Abstract analysis -- Observations

$$
Y\left(a_{1}\right) \times Y\left(a_{2}\right)=Y\left(a_{1} x^{A} a_{2}\right)
$$

Example:
$Y($ pos $) \times Y($ pos $)=Z^{+} \times Z^{+}=Z^{+}$
$\operatorname{pos} x^{A}$ pos $=\operatorname{pos}$
$\gamma($ pos $)=Z^{+}$

X_{A}	\perp	neg	zero	pos	T
\perp	\perp	\perp	\perp	\perp	\perp
neg	\perp	pos	zero	neg	T
zero	\perp	zero	zero	zero	zero
pos	\perp	neg	zero	pos	T
T	\perp	T	zero	T	T

Lecture 7, April 24
CS357D Spring 2007

Galois connection

Let $\left(\Sigma_{A}, \leq^{A}\right)$ and (Σ, \subseteq) be partially ordered sets.

A pair (α, γ) is a Galois connection if the following hold:
(1) $\alpha: \Sigma \rightarrow \Sigma_{A}$ and $\gamma: \Sigma_{A} \rightarrow \Sigma$
(2) α and γ are monotone
(3) $S \subseteq Y(\alpha(S))$ for all $S \in \Sigma$ and $\alpha(Y(a)) \leq^{A} a \quad$ for all $a \in \Sigma_{A}$

Note: if $\alpha(\gamma(a))=a$ then (α, Y) is called a Galois insertion

Galois connection

The functions α and γ determine each other: if one is given, the other follows

Given Υ :
$\alpha(S)$ is the smallest object in Σ_{A} that represents all of S :

```
\alpha(S)}=\operatorname{inf}{a\in\mp@subsup{\Sigma}{A}{}|S\subseteqY(a)
            = nA {a\in \Sigma | | S\subseteq Y(a)} (meet)
```

Example: $\quad S=\{3,4\}$
$S \subseteq Y(T) \quad S \subseteq Y(p o s)$
$\alpha(\{3,4\})=\inf \{\operatorname{pos}, T\}=\operatorname{pos}$

Lecture 7, April 24	37	CS357D Spring 2007

Galois connection

Given γ :

$\alpha(S)$ is the smallest object in Σ_{A} that represents all of S :

$$
\begin{aligned}
\alpha(S) & =\inf \left\{a \in \Sigma_{A} \mid S \subseteq \gamma(a)\right\} \\
& =\cap^{A}\left\{a \in \Sigma_{A} \mid S \subseteq \gamma(a)\right\} \text { (meet) }
\end{aligned}
$$

Given α :

$Y(a)$ is the largest object in Σ that is fully described by a :

```
r(a) = sup {S {\Sigma| \alpha(S) \leqA a }
\(=\mathbf{U}\left\{S \in \Sigma \mid \alpha(S) \leq^{A} a\right\}\) (join)
```


Galois connection

The functions α and γ determine each other: if one is given, the other follows

Given α :

$r(a)$ is the largest object in Σ that is fully described by a :

$$
\begin{aligned}
\gamma(a) & =\sup \left\{S \in \Sigma \mid \alpha(S) \leq^{A} a\right\} \\
& =U\left\{S \in \Sigma \mid \alpha(S) \leq^{A} a\right\}
\end{aligned}
$$

Example: $\alpha(\{3,4\}) \leq^{A}$ pos $\alpha(\{17,32,42\}) \leq^{A}$ pos

$$
\begin{equation*}
\Upsilon(\text { pos })=\{3,4\} \cup\{17,32,42\} \cup \ldots . . \tag{+}
\end{equation*}
$$

Lecture 7, April 24
38

