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Abstraction of Physical Systems

2

Abstraction enables us to do system analysis in one domain and 
carry over the results into a different domain

Common abstraction:

Physical system Mathematical model

we analyze a mathematical model of 
the system and assume that the 
physical system behaves similarly.

the justification that analysis results can indeed be carried over is necessarily 
informal, since we cannot establish a formal correspondence between the physical 

system and the mathematical model; we rely on domain experts and experimentation

modeling

analysis results
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Mathematical Abstraction
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(concrete)
Mathematical model Mathematical model

modeling

analysis results
(abstract)

we analyze a, usually simpler, 
mathematical model of the system 

and conclude that the more complex 
model has the same properties.

In this case, property preservation can be formally justified since 
we can define a formal relationship between the two models.

Here we will be concerned only with this type of abstraction, and in particular 

with abstract interpretation, the theory that relates the semantics of systems in 
different domains.
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Abstract Interpretation (Cousot&Cousot 1977)
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The theory of abstract interpretation was introduced by Cousot and 
Cousot (POPL’77); it has been and still is being used in many 
different settings, ranging from compiler optimization to language 
semantics analysis, formal verification, and theorem proving.

From the POPL’77 paper:

“A program denotes computations in some universe of objects. 
Abstract interpretation of programs consists in using that denotation 
to describe computations in another universe of abstract objects, so 
that the results of abstract execution give some information about 
the actual computations.”
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Abstract Interpretation -- more quotes
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Cousot & Cousot, Journal of Logic and Computation, 1992:

“Abstract interpretation is a method for designing approximate 
semantics of programs which can be used to gather information 
about programs in order to provide sound answers to questions 
about their runtime behaviors. These semantics can then be 
used to design manual proof methods or to specify automatic 
program analyses.”
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Abstract interpretation -- more quotes
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Cousot & Cousot, 1992:

“Theoretical point of view: The purpose of abstract 
interpretation is to design hierarchies of interrelated 
semantics at various levels of detail.”

“Practical point of view: The purpose of abstract 
interpretation is to design automatic program analysis 
tools for determining statically dynamic properties of 
programs.”
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Abstract interpretation -- basics
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Given: 

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

We have to choose / construct :

1. Abstract domain

2.Correspondence between abstract and concrete objects

3.Abstract semantics
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Abstract interpretation -- basics

8

Given: 

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in
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Abstract interpretation -- a simple example
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Question          : are the results of these multiplications 
less than, equal to, or greater than zero?

Concrete system : multiplication of integers

Concrete domain: sets of integers ! = 2Z

Extend the semantics of multiplication to multiplication of sets:

S1 x S2 = { n | ∃n1 ∈ S1 , n2 ∈ S2 .  n1 x n2 = n }

Example:  { 1 , 2 } x { 3 , 4 } =  { 3 , 4 , 6 , 8 }
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Abstract interpretation -- basics

10

We have to choose / construct :

1. Abstract domain

2.Correspondence between abstract and concrete objects

3.Abstract semantics

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- a simple example
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Question          : are the results of these multiplications 
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }
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Abstract interpretation -- a simple example
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Question          : are the results of these multiplications 
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

!A = { -1 , 0 , 1 }

!A = { !"# ,  $"%& ,  '&( }

!A = { ♭ , ♮ , ♯ }

!A = { ! , ☁ , ) }

!A = { * , + , , }
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Abstract interpretation -- a simple example

13

Question          : are the results of these multiplications 
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }
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Choose an abstract domain
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Question          : are the results of these multiplications 
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

2. Correspondence between abstract and concrete objects

expressed by a concretization function

" : !A  #  !
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Concretization function
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" : !A  #  !

maps abstract objects to concrete objects

gives meaning to the abstract objects

sets of integers

" ( neg )   =  { n ∈ Z | n < 0 }

{ neg , zero , pos }

" ( zero )  =  { 0 }

" ( pos )   =  { n ∈ Z | n > 0 }
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Abstraction function
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$ :  !  #  !A

maps concrete objects into abstract objects

sets of integers { neg , zero , pos }

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  ?          otherwise ?? 
we need another 

abstract object to map 
sets like { 3 , -4 } into
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Abstraction function

17

$ :  !  #  !A

maps concrete objects into abstract objects

sets of integers { neg , zero , pos }

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  T          otherwise  introduce new abstract object 

T (top) 
with meaning

 "( T ) = Z
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Abstraction function

18

$ :  !  #  !A

maps concrete objects into abstract objects

sets of integers

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  T          otherwise  

for symmetry also add new 

abstract object ⊥ (bottom) 

with meaning

 "( ⊥ ) = ∅

$(  S  )    =  ⊥          if S = ∅  

{ ⊥, neg , zero , pos, T }
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Abstraction function

19

$ :  !  #  !A

maps concrete objects into abstract objects

sets of integers { ⊥, neg , zero , pos, T }

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  T          otherwise  

$(  S  )    =  ⊥          if S = ∅  
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Concretization function

20

" : !A  #  !

maps abstract objects to concrete objects

gives meaning to the abstract objects

sets of integers

" ( neg )   =  { n ∈ Z | n < 0 }

" ( zero )  =  { 0 }

" ( pos )   =  { n ∈ Z | n > 0 }

" (  ⊥  )   =  ∅

" (  T   )   =  Z

{ ⊥, neg , zero , pos, T }
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Abstraction and Concretization function
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$ :  !  #  !A " : !A  #  !

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  T          otherwise  

$(  S  )    =  ⊥          if S = ∅  

" ( neg )   =  { n ∈ Z | n < 0 }  = Z-

" ( zero )  =  { 0 }

" ( pos )   =  { n ∈ Z | n > 0 }  = Z+

" (  ⊥  )   =  ∅

" (  T   )   =  Z

abstraction concretization
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Abstraction function

22

pos
neg

zero
T

⊥

! = 2Z

∅

{ 0 }

Z

{ 3 , 4 }

{ -7 , -12 , -42 }

{-2 , 0 , 14 }

!A

{-2 , 0 , 14 , 27 }

{-2 , 0 }

$

$

$

$

$

$

$

size: uncountable

size: 5

Z-

Z+
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Concretization function

23

pos
neg

zero
T

⊥

! = 2Z

∅

{ 0 }

Z

{ 3 , 4 }

{ -7 , -12 , -42 }

{-2 , 0 , 14 }

!A

{-2 , 0 , 14 , 27 }

{-2 , 0 }

size: uncountable

size: 5

Z-

Z+ "

"

"

"

"
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Abstract version of multiplication

24

Concrete multiplication: xC : ! x ! # !

Abstract multiplication: xA : !A x !A # !A

Example:  { 1 , 2 } xC { 3 , 4 } =  { 3 , 4 , 6 , 8 }
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Abstract version of multiplication

25

Abstract multiplication: xA : !A x !A # !A

xA

⊥

⊥

⊥

neg zero pos T

neg

zero

pos

T

⊥ ⊥ ⊥ ⊥
⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T
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Abstract analysis

26

Concrete question: n1 x n2 0=
>

<
?

Abstract n1 and n2 :

Procedure:

n1
A  = $ ( { n1 } ) n2

A  = $ ( { n2 } )

Perform abstract multiplication : nA = n1
A xA n2

A

Concretize nA : S = " ( nA )

if S = Z+ then n1 x n2 > 0

if S = Z- then n1 x n2 < 0

if S = { 0 } then n1 x n2 = 0

if S = Z then we don’t know
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Abstract analysis -- Example
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n1 x n2 0=
>

<
?

Abstract n1 and n2 : n1
A  = $ ( { n1 } )  =  pos

n2
A  = $ ( { n2 } )  =  pos

Perform abstract multiplication : nA = n1
A xA n2

A

Concretize nA : S = " ( nA )  =  Z+

if S = Z+ then n1 x n2 > 0

n1 = 783,422

n2 = 409,312

=  pos xA pos  =  pos

Conclude:  783,422 x 409,312  >  0
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Abstract analysis -- Observations

28

•The choice of abstract domain was governed by the question. If 
the question had been to determine whether the result was 
even or odd, we would have chosen a different abstract domain 
and abstract semantics.

•The concrete domain is a partially ordered set with the subset 
relation ⊆ as order.

•We can also impose an order <A on the abstract domain:

T

neg zero pos

⊥

⊥  <A  neg

⊥  <A  zero

⊥  <A  pos

neg  <A  T

zero  <A  T

pos  <A  T

⊥  <A  T
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Abstract analysis -- Observations
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•$  and   "  are both monotone:

S1  ⊆  S2  #  $( S1 ) !A  $( S2 )

a1!!A  a2   #  "( a1 ) ⊆  "( a2 )

Example: 

{ 0 }  ⊆  { 0 , 1 , 2 }
$( { 0 } )  =  zero

$( { 0 , 1 , 2 } )  =  T

T

neg zero pos

⊥

zero  <A  T

$( { 0 } )  = zero

$(  S  )    = neg        if     ∀n∈S . n < 0

$(  S  )    = pos        if     ∀n∈S . n > 0

$(  S  )    =  T          otherwise  

$(  S  )    =  ⊥          if S = ∅  

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

30

•$  and   "  are both monotone:

S1  ⊆  S2  #  $( S1 ) !A  $( S2 )

a1!!A  a2   #  "( a1 ) ⊆  "( a2 )

Example: 

"( zero )  =  { 0 }

T

neg zero pos

⊥

zero  <A  T

"( T )  =  Z

{ 0 }  ⊆  Z

" ( neg )   =  { n ∈ Z | n < 0 }  = Z-

" ( zero )  =  { 0 }

" ( pos )   =  { n ∈ Z | n > 0 }  = Z+

" (  ⊥  )   =  ∅

" (  T   )   =  Z
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Abstract analysis -- Observations
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•The result of abstraction followed by concretization is 
something larger:

S  ⊆  " ( $ ( S ) )

S  =  { 3 , 4 }

$ ( S )  =  pos

" ( $ ( S ) ) = " ( pos ) =  Z+

Example: 

{ 3 , 4 }  ⊆  Z+

!

!A

$

"
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Abstract analysis -- Observations
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•The result of concretization followed by abstraction is the 
same object:

$( " ( a ) )  =  a

Example:

a  =  pos

"( a )  = Z+

$( "( a ) ) = pos
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Abstract analysis -- Observations
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•Abstract multiplication over-approximates

"( a1 ) x "( a2 )  ⊆  "( a1 xA a2 )

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

( in this case it is 
actually equal )

we don’t lose 
anything by 
doing abstract 
multiplications
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Abstract analysis -- Observations

34

"( a1 ) x "( a2 )  =  "( a1 xA a2 )

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

Example:

"( pos ) x "( pos )  = Z+  x  Z+    =  Z+

pos  xA  pos  =  pos

"( pos )  =  Z+
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Abstract analysis -- Observations
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"( a1 ) x "( a2 )  =  "( a1 xA a2 )

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

Example:

"( neg ) x "( zero )  = Z-  x  { 0 }    =  { 0 }

neg  xA  zero  =  zero

"( zero )  =  { 0 }
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Galois connection

36

Let ( !A , !A )  and  ( ! , ⊆ )   be partially ordered sets.

A pair ( $ , " ) is a Galois connection if the following hold:

(1) $ : ! # !A   and  " : !A # !

(2) $  and  "  are monotone

(3) S  ⊆  " ( $ ( S ) )   for all S ∈ !  and  
$( " ( a ) )  %A a    for all a ∈ !A

Note:   if  $( " ( a ) )  =  a   then  ( $ , " ) is called a 

Galois insertion
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Galois connection
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The functions  $  and  "  determine each other:  if one is given,
the other follows

Example: S  =  { 3 , 4 }

S  ⊆  "( T ) S  ⊆  "( pos )
$( { 3 , 4 } )  =  inf { pos , T }   =  pos

Given " :

$( S ) is the smallest object in !A that represents all of S :

$( S )  =  inf { a ∈ !A |  S ⊆  "( a )  }
=  ∩A { a ∈ !A |  S ⊆  "( a )  }   (meet)
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Galois connection
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The functions  $  and  "  determine each other:  if one is given,
the other follows

Given $:

"( a ) is the largest object in ! that is fully described by a :

 "( a )  =  sup { S ∈ ! |  $( S )  !A  a  }

$( { 3 , 4 } ) !A  pos

"( pos )  =  { 3 , 4 } ∪ { 17 , 32 , 42 } ∪  ......    =  Z+

          =  ∪  { S ∈ ! |  $( S )  !A  a  }

Example:
$( { 17 , 32 , 42 } ) !A  pos

.........
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Galois connection

39

Given $:

"( a ) is the largest object in ! that is fully described by a :

 "( a )  =  sup { S ∈ ! |  $( S )  !A  a  }

          =  ∪  { S ∈ ! |  $( S )  !A  a  }   (join)

Given " :

$( S ) is the smallest object in !A that represents all of S :

$( S )  =  inf  { a ∈ !A |  S ⊆  "( a )  }
=  ∩A { a ∈ !A |  S ⊆  "( a )  }  (meet)


