
CS357D Spring 2007Lecture 7, April 24 1

CS 357 D
Lecture 7

http://cs357d.stanford.edu/

April 24, 2007

Abstract Interpretation
Introduction

CS357D Spring 2007Lecture 7, April 24

Abstraction of Physical Systems

2

Abstraction enables us to do system analysis in one domain and
carry over the results into a different domain

Common abstraction:

Physical system Mathematical model

we analyze a mathematical model of
the system and assume that the
physical system behaves similarly.

the justification that analysis results can indeed be carried over is necessarily
informal, since we cannot establish a formal correspondence between the physical

system and the mathematical model; we rely on domain experts and experimentation

modeling

analysis results

CS357D Spring 2007Lecture 7, April 24

Mathematical Abstraction

3

(concrete)
Mathematical model Mathematical model

modeling

analysis results
(abstract)

we analyze a, usually simpler,
mathematical model of the system

and conclude that the more complex
model has the same properties.

In this case, property preservation can be formally justified since
we can define a formal relationship between the two models.

Here we will be concerned only with this type of abstraction, and in particular

with abstract interpretation, the theory that relates the semantics of systems in
different domains.

CS357D Spring 2007Lecture 7, April 24

Abstract Interpretation (Cousot&Cousot 1977)

4

The theory of abstract interpretation was introduced by Cousot and
Cousot (POPL’77); it has been and still is being used in many
different settings, ranging from compiler optimization to language
semantics analysis, formal verification, and theorem proving.

From the POPL’77 paper:

“A program denotes computations in some universe of objects.
Abstract interpretation of programs consists in using that denotation
to describe computations in another universe of abstract objects, so
that the results of abstract execution give some information about
the actual computations.”

CS357D Spring 2007Lecture 7, April 24

Abstract Interpretation -- more quotes

5

Cousot & Cousot, Journal of Logic and Computation, 1992:

“Abstract interpretation is a method for designing approximate
semantics of programs which can be used to gather information
about programs in order to provide sound answers to questions
about their runtime behaviors. These semantics can then be
used to design manual proof methods or to specify automatic
program analyses.”

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- more quotes

6

Cousot & Cousot, 1992:

“Theoretical point of view: The purpose of abstract
interpretation is to design hierarchies of interrelated
semantics at various levels of detail.”

“Practical point of view: The purpose of abstract
interpretation is to design automatic program analysis
tools for determining statically dynamic properties of
programs.”

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- basics

7

Given:

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

We have to choose / construct :

1. Abstract domain

2.Correspondence between abstract and concrete objects

3.Abstract semantics

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- basics

8

Given:

- a concrete system with concrete (standard) semantics
- some notion of the properties we are interested in

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- a simple example

9

Question : are the results of these multiplications
less than, equal to, or greater than zero?

Concrete system : multiplication of integers

Concrete domain: sets of integers ! = 2Z

Extend the semantics of multiplication to multiplication of sets:

S1 x S2 = { n | ∃n1 ∈ S1 , n2 ∈ S2 . n1 x n2 = n }

Example: { 1 , 2 } x { 3 , 4 } = { 3 , 4 , 6 , 8 }

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- basics

10

We have to choose / construct :

1. Abstract domain

2.Correspondence between abstract and concrete objects

3.Abstract semantics

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- a simple example

11

Question : are the results of these multiplications
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- a simple example

12

Question : are the results of these multiplications
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

!A = { -1 , 0 , 1 }

!A = { !"# , $"%& , '&(}

!A = { ♭ , ♮ , ♯ }

!A = { ! , ☁ ,) }

!A = { * , + , , }

CS357D Spring 2007Lecture 7, April 24

Abstract interpretation -- a simple example

13

Question : are the results of these multiplications
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

CS357D Spring 2007Lecture 7, April 24

Choose an abstract domain

14

Question : are the results of these multiplications
less than, equal to, or greater than zero?

1. Abstract domain: !A = { neg , zero , pos }

2. Correspondence between abstract and concrete objects

expressed by a concretization function

" : !A # !

CS357D Spring 2007Lecture 7, April 24

Concretization function

15

" : !A # !

maps abstract objects to concrete objects

gives meaning to the abstract objects

sets of integers

" (neg) = { n ∈ Z | n < 0 }

{ neg , zero , pos }

" (zero) = { 0 }

" (pos) = { n ∈ Z | n > 0 }

CS357D Spring 2007Lecture 7, April 24

Abstraction function

16

$: ! # !A

maps concrete objects into abstract objects

sets of integers { neg , zero , pos }

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = ? otherwise ??
we need another

abstract object to map
sets like { 3 , -4 } into

CS357D Spring 2007Lecture 7, April 24

Abstraction function

17

$: ! # !A

maps concrete objects into abstract objects

sets of integers { neg , zero , pos }

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = T otherwise introduce new abstract object

T (top)
with meaning

 "(T) = Z

CS357D Spring 2007Lecture 7, April 24

Abstraction function

18

$: ! # !A

maps concrete objects into abstract objects

sets of integers

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = T otherwise

for symmetry also add new

abstract object ⊥ (bottom)

with meaning

 "(⊥) = ∅

$(S) = ⊥ if S = ∅

{ ⊥, neg , zero , pos, T }

CS357D Spring 2007Lecture 7, April 24

Abstraction function

19

$: ! # !A

maps concrete objects into abstract objects

sets of integers { ⊥, neg , zero , pos, T }

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = T otherwise

$(S) = ⊥ if S = ∅

CS357D Spring 2007Lecture 7, April 24

Concretization function

20

" : !A # !

maps abstract objects to concrete objects

gives meaning to the abstract objects

sets of integers

" (neg) = { n ∈ Z | n < 0 }

" (zero) = { 0 }

" (pos) = { n ∈ Z | n > 0 }

" (⊥) = ∅

" (T) = Z

{ ⊥, neg , zero , pos, T }

CS357D Spring 2007Lecture 7, April 24

Abstraction and Concretization function

21

$: ! # !A " : !A # !

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = T otherwise

$(S) = ⊥ if S = ∅

" (neg) = { n ∈ Z | n < 0 } = Z-

" (zero) = { 0 }

" (pos) = { n ∈ Z | n > 0 } = Z+

" (⊥) = ∅

" (T) = Z

abstraction concretization

CS357D Spring 2007Lecture 7, April 24

Abstraction function

22

pos
neg

zero
T

⊥

! = 2Z

∅

{ 0 }

Z

{ 3 , 4 }

{ -7 , -12 , -42 }

{-2 , 0 , 14 }

!A

{-2 , 0 , 14 , 27 }

{-2 , 0 }

$

$

$

$

$

$

$

size: uncountable

size: 5

Z-

Z+

CS357D Spring 2007Lecture 7, April 24

Concretization function

23

pos
neg

zero
T

⊥

! = 2Z

∅

{ 0 }

Z

{ 3 , 4 }

{ -7 , -12 , -42 }

{-2 , 0 , 14 }

!A

{-2 , 0 , 14 , 27 }

{-2 , 0 }

size: uncountable

size: 5

Z-

Z+ "

"

"

"

"

CS357D Spring 2007Lecture 7, April 24

Abstract version of multiplication

24

Concrete multiplication: xC : ! x ! # !

Abstract multiplication: xA : !A x !A # !A

Example: { 1 , 2 } xC { 3 , 4 } = { 3 , 4 , 6 , 8 }

CS357D Spring 2007Lecture 7, April 24

Abstract version of multiplication

25

Abstract multiplication: xA : !A x !A # !A

xA

⊥

⊥

⊥

neg zero pos T

neg

zero

pos

T

⊥ ⊥ ⊥ ⊥
⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

CS357D Spring 2007Lecture 7, April 24

Abstract analysis

26

Concrete question: n1 x n2 0=
>

<
?

Abstract n1 and n2 :

Procedure:

n1
A = $ ({ n1 }) n2

A = $ ({ n2 })

Perform abstract multiplication : nA = n1
A xA n2

A

Concretize nA : S = " (nA)

if S = Z+ then n1 x n2 > 0

if S = Z- then n1 x n2 < 0

if S = { 0 } then n1 x n2 = 0

if S = Z then we don’t know

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Example

27

n1 x n2 0=
>

<
?

Abstract n1 and n2 : n1
A = $ ({ n1 }) = pos

n2
A = $ ({ n2 }) = pos

Perform abstract multiplication : nA = n1
A xA n2

A

Concretize nA : S = " (nA) = Z+

if S = Z+ then n1 x n2 > 0

n1 = 783,422

n2 = 409,312

= pos xA pos = pos

Conclude: 783,422 x 409,312 > 0

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

28

•The choice of abstract domain was governed by the question. If
the question had been to determine whether the result was
even or odd, we would have chosen a different abstract domain
and abstract semantics.

•The concrete domain is a partially ordered set with the subset
relation ⊆ as order.

•We can also impose an order <A on the abstract domain:

T

neg zero pos

⊥

⊥ <A neg

⊥ <A zero

⊥ <A pos

neg <A T

zero <A T

pos <A T

⊥ <A T

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

29

•$ and " are both monotone:

S1 ⊆ S2 # $(S1) !A $(S2)

a1!!A a2 # "(a1) ⊆ "(a2)

Example:

{ 0 } ⊆ { 0 , 1 , 2 }
$({ 0 }) = zero

$({ 0 , 1 , 2 }) = T

T

neg zero pos

⊥

zero <A T

$({ 0 }) = zero

$(S) = neg if ∀n∈S . n < 0

$(S) = pos if ∀n∈S . n > 0

$(S) = T otherwise

$(S) = ⊥ if S = ∅

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

30

•$ and " are both monotone:

S1 ⊆ S2 # $(S1) !A $(S2)

a1!!A a2 # "(a1) ⊆ "(a2)

Example:

"(zero) = { 0 }

T

neg zero pos

⊥

zero <A T

"(T) = Z

{ 0 } ⊆ Z

" (neg) = { n ∈ Z | n < 0 } = Z-

" (zero) = { 0 }

" (pos) = { n ∈ Z | n > 0 } = Z+

" (⊥) = ∅

" (T) = Z

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

31

•The result of abstraction followed by concretization is
something larger:

S ⊆ " ($ (S))

S = { 3 , 4 }

$ (S) = pos

" ($ (S)) = " (pos) = Z+

Example:

{ 3 , 4 } ⊆ Z+

!

!A

$

"

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

32

•The result of concretization followed by abstraction is the
same object:

$(" (a)) = a

Example:

a = pos

"(a) = Z+

$("(a)) = pos

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

33

•Abstract multiplication over-approximates

"(a1) x "(a2) ⊆ "(a1 xA a2)

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

(in this case it is
actually equal)

we don’t lose
anything by
doing abstract
multiplications

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

34

"(a1) x "(a2) = "(a1 xA a2)

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

Example:

"(pos) x "(pos) = Z+ x Z+ = Z+

pos xA pos = pos

"(pos) = Z+

CS357D Spring 2007Lecture 7, April 24

Abstract analysis -- Observations

35

"(a1) x "(a2) = "(a1 xA a2)

xA ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

neg zero pos T

neg

zero

pos

T

⊥
⊥
⊥
⊥

pos

pos

zero

zero

zero

zero

zero zero zero

neg

neg T

T

T T T

Example:

"(neg) x "(zero) = Z- x { 0 } = { 0 }

neg xA zero = zero

"(zero) = { 0 }

CS357D Spring 2007Lecture 7, April 24

Galois connection

36

Let (!A , !A) and (! , ⊆) be partially ordered sets.

A pair ($, ") is a Galois connection if the following hold:

(1) $: ! # !A and " : !A # !

(2) $ and " are monotone

(3) S ⊆ " ($ (S)) for all S ∈ ! and
$(" (a)) %A a for all a ∈ !A

Note: if $(" (a)) = a then ($, ") is called a

Galois insertion

CS357D Spring 2007Lecture 7, April 24

Galois connection

37

The functions $ and " determine each other: if one is given,
the other follows

Example: S = { 3 , 4 }

S ⊆ "(T) S ⊆ "(pos)
$({ 3 , 4 }) = inf { pos , T } = pos

Given " :

$(S) is the smallest object in !A that represents all of S :

$(S) = inf { a ∈ !A | S ⊆ "(a) }
= ∩A { a ∈ !A | S ⊆ "(a) } (meet)

CS357D Spring 2007Lecture 7, April 24

Galois connection

38

The functions $ and " determine each other: if one is given,
the other follows

Given $:

"(a) is the largest object in ! that is fully described by a :

 "(a) = sup { S ∈ ! | $(S) !A a }

$({ 3 , 4 }) !A pos

"(pos) = { 3 , 4 } ∪ { 17 , 32 , 42 } ∪ = Z+

 = ∪ { S ∈ ! | $(S) !A a }

Example:
$({ 17 , 32 , 42 }) !A pos

.........

CS357D Spring 2007Lecture 7, April 24

Galois connection

39

Given $:

"(a) is the largest object in ! that is fully described by a :

 "(a) = sup { S ∈ ! | $(S) !A a }

 = ∪ { S ∈ ! | $(S) !A a } (join)

Given " :

$(S) is the smallest object in !A that represents all of S :

$(S) = inf { a ∈ !A | S ⊆ "(a) }
= ∩A { a ∈ !A | S ⊆ "(a) } (meet)

