CS 357 D

Lecture 8

Orders and Lattices

http://cs357d.stanford.edu/

April 26, 2007

Lecture 8, April 26

- 1

CS357D Spring 2007

CS357D Spring 2007

LATTICES AND ORDER

Supplementary Notes based on

Introduction to Lattices and Order by B.A. Davey and H.A. Priestley

Cambridge University Press, 2001

Lecture 8, April 26

2

CS357D Spring 2007

Order

Lecture 8, April 26

Let P be a set. An order (or partial order) on P is a binary relation \leq on P such that for all $x,y,z \in P$:

- (i) $x \le x$ (reflexivity)
- (ii) $x \le y$ and $y \le z$ implies $x \le z$ (transitivity)
- (iii) $x \le y$ and $y \le x$ implies x = y (antisymmetry)

The relation \leq gives rise to the relation < of strict inequality:

$$x < y$$
 in P iff $x \le y$ and $x \ne y$

Partially ordered set (Poset)

A set P equipped with an order relation \leq is called a partially ordered set, or poset

```
Example: (P, \leq) with P = \{ \perp, neg, zero, pos, T \} \leq = \{ (\bot, \bot), (neg, neg), (zero, zero), (pos, pos), (T, T), (\bot, neg), (\bot, zero), (\bot, pos), (\bot, T), (neg, T), (zero, T), (pos, T) \}
```

note that the elements neg , zero , and pos are not related to each other: we don't have neg \leq zero nor zero \leq neg

Lecture 8, April 26 4 CS357D Spring 2007

Covering relation

 (P, \leq) : ordered set $x,y \in P$

x is covered by y , written x < y if

(i) x < y, and

intuitive meaning: there is

(ii) $x \le z < y$ implies z = x

nothing between x and y

For a finite set, the ordering relation is determined by the covering relation and v.v.

Lecture 8, April 26

5

CS357D Spring 2007

Hasse diagrams

Hasse diagrams are a pictorial representation of the covering relation:

if x ⊰ y

x and y are connected by an edge, and x is drawn below y

Example:

Lecture 8, April 26 7 CS357D Spring 2007

Covering relation

Examples:

$$(N, \leq)$$
 $x \leq y$ if $y = x + 1$

 (\Re, \leq) no covering relation

(
$$\wp(X)$$
 , \subseteq) A \prec B if B = A \cup {b} for some b \in X / A powerset of X

Lecture 8, April 26

6

CS357D Spring 2007

Ö

Ö

0

Special partially ordered sets

Chain

An ordered set P is a chain if for all $x, y \in P$ either $x \le y$ or $y \le x$ (all elements are comparable)

Also known as: ▶ linearly ordered set
▶ totally ordered set

Examples:

(Z , \leq) (set of all integers with the standard order) ($\{\bot, \top\}$, $\{(\bot, \bot), (\top, \top)\}$)

Special partially ordered sets

Antichain

An ordered set P is an antichain if for all $x, y \in P$ if $x \le y$ then x = y (no elements are comparable)

0 0 0 0 0 0 0

Examples:

```
( Z, {(x,x) | x ∈ Z}) (set of all integers with reflexive relation)
( { neg , zero , pos },
 {(neg , neg), (zero , zero), (pos , pos)})
```

Lecture 8, April 26

9

CS357D Spring 2007

Hasse diagrams -- Example

Diagram of $(\wp(\{1,2,3\}),\subseteq):$

3-element set

2-element sets

1-element sets

0-element set

Lecture 8, April 26 10 CS357D Spring 2007

Maps between orders

(P , \leq_P) , (Q , \leq_Q) : ordered sets

 $f: P \rightarrow Q$, function from P to Q , is

(i) monotone (order-preserving) if

$$x \leq_P y$$
 implies $f(x) \leq_Q f(y)$

(ii) an order-embedding if

$$x \leq_P y$$
 iff $f(x) \leq_Q f(y)$

(iii) an order-isomorphism if

$$x \leq_P y$$
 iff $f(x) \leq_Q f(y)$ and f is onto

Maps between orders -- example

monotone, but not an order-embedding

Lecture 8, April 26 12 CS357D Spring 2007

Maps between orders -- example

monotone

not order-embedding

monotone order-embedding

Lecture 8, April 26 CS357D Spring 2007

Top and Bottom

 (P, \leq_P) : ordered set $x \in P$

x is a bottom (least) element (\bot) of P if $\forall y \in P . x \leq_P y$

x is a top (greatest) element (T) of P if $\forall y \in P . y \leq_P x$

top and bottom may not exist

top and bottom are unique if they exists

no top, no bottom

Lecture 8, April 26 CS357D Spring 2007

Top and bottom -- examples

(℘ (X) , ⊆):

 $\perp = \emptyset$

T = X

 $(\{n \mid n \ge 0\}, \le) : \bot = 0$

no top

 $(\{ x \in R \mid a \le x \le b \}, \le) : \bot = a$

 $(\{x \in R \mid a < x < b\}, \leq) :$ no bottom

no top

Lifting

Add a bottom element to an otherwise unordered set

S

 $S_{\perp} = S \cup \{ \perp \}$

Lecture 8, April 26 CS357D Spring 2007 Lecture 8, April 26

CS357D Spring 2007

Maximal and minimal elements

 (P, \leq_P) : ordered set, $Q \subseteq P$, $x \in Q$

x is a maximal element of Q if

for all $y \in Q$: $x \le y$ implies x = y

x is a minimal element of Q if

2 maximal elements

for all $y \in Q$: $y \le x$ implies x = y

Example:

($\wp(N)\N$, \subseteq) has maximal elements $N\n$ for all $n \in N$

Lecture 8, April 26 17 CS357D Spring 2007

Upper bound

 (P, \leq_P) : ordered set, $Q \subseteq P, x \in P$

x is an upper bound of Q if $\forall y \in Q . y \leq_P x$

 $Q^u: \{ x \in P \mid \forall y \in Q : y \leq_P x \}$ all upper bounds of Q

if Qu has a least element x:

x is called the least upper bound (lub) or supremum (sup) of Q

if Q has a top element T: sup Q = T

Lecture 8, April 26 19 CS357D Spring 2007

Down-sets and Up-sets

(P , \leq_P): ordered set, Q \subseteq P

Q is an up-set (order filter, increasing set) if for all $x \in Q$, $y \in P$: $x \le y$ implies $y \in Q$ (Q is closed under going up)

Q is a down-set (order ideal , decreasing set) if for all $x \in Q$, $y \in P$: $y \le x$ implies $y \in Q$ (Q is closed under going down)

Lecture 8, April 26 CS357D Spring 2007

Lower bound

(P , \leq_P): ordered set, Q \subseteq P , x \in P

x is a lower bound of Q if $\forall y \in Q . x \leq_P y$

 $Q^{l}: \{ x \in P \mid \forall y \in Q : x \leq_{P} y \}$ all lower bounds of Q

if Q1 has a greatest element x:

x is called the greatest lower bound (glb) or infimum (inf) of Q

if Q has a bottom element \bot : inf Q = \bot

Lecture 8, April 26 20 CS357D Spring 2007

Upper and lower bounds

(P , \leq_P) : ordered set, assume P has \bot and T

$$\sup P = T$$
 inf $P = \bot$

$$\sup \emptyset = \bot$$
 inf $\emptyset = T$ Note: $\emptyset^u = \emptyset^l = P$

Notation:

$$\sup(\{x,y\}) = x \lor y$$
 join $\sup Q = \bigvee Q$
 $\inf(\{x,y\}) = x \land y$ meet $\inf Q = \bigwedge Q$

Some properties:

if
$$x \leq_P y$$
 then $x \wedge y = x$ and $x \vee y = y$

Lecture 8, April 26 21 CS357D Spring 2007

Lattice

(P, \leq_P): ordered set

P is a lattice if $x \wedge y$ and $x \vee y$ exist for all $x, y \in P$

P is a complete lattice if \bigvee_Q and \bigwedge_Q exist for all $Q\subseteq P$

Lecture 8, April 26 22 CS357D Spring 2007

Lattice

Note:

$$\varnothing\subseteq P$$
 , $P\subseteq P$, so in a complete lattice
$$\bigvee\varnothing$$
 , $\bigwedge\varnothing$, $\bigvee P$ and $\bigwedge P$ must all exist

recomplete lattice must be bounded

Examples:

(
$$\wp$$
 (X) , \subseteq) is a complete lattice for any set X

(N ,
$$\leq_{\text{div}}$$
) is a complete lattice divides relation

Lecture 8, April 26 23 CS357D Spring 2007

Complete lattice -- example

Lattice as algebraic structure

 (P, \leq_P) : lattice

Define \wedge and \vee as functions: \wedge , \vee : $P^2 \rightarrow P$

 $x \wedge y = \inf\{x, y\}$

 $x \lor y = \sup\{x, y\}$

Properties: ∧ ,∨ are order preserving

 $x \leq_{P} z$ implies $x \wedge y \leq_{P} z \wedge y$ and $x \vee y \leq_{P} z \vee y$

 $x \leq_P z$ and $y \leq_P t$ implies $x \wedge y \leq_P z \wedge t$ and

 $x \vee y \leq_{P} z \vee \uparrow$

Lecture 8, April 26

CS357D Spring 2007

Lattice as algebraic structure

Properties:

associative:
$$(x \lor y) \lor z = x \lor (y \lor z)$$
 $(x \land y) \land z = x \land (y \land z)$

$$(x \wedge y) \wedge z = x \wedge (y \wedge z)$$

commutative:

$$x \wedge y = x \wedge y$$

$$x \lor y = x \lor y$$

idempotent: $x \lor x = x$ $x \land x = x$

$$x \lor x = y$$

$$x \wedge x = x$$

absorption

$$x \land (x \lor y) = x$$
 $x \lor (x \land y) = x$

$$x \lor (x \land y) = x$$

In a lattice, join and meet are determined by the order and v.v.

$$(P, V_P, \Lambda_P)$$

 (P, \leq_P) (P, \vee_P, \wedge_P) can be used interchangeably

Lecture 8, April 26

CS357D Spring 2007

Lattice as algebraic structure

Properties:

$$\bot \land a = \bot$$
 $\bot \lor a = a$

⊥ acts like 0

CS357D Spring 2007

 $T \wedge a = a$ $T \vee a = T$

$$T \vee a = 7$$

T acts like 1

Alternative representations: (P, \leq_P) (P, \wedge, \vee)

$$(P.<_{P})$$

Note:

in (N, lcm, gcd):
$$0 = 1$$
 and $1 = 0$

Homomorphism

$$(P, \leq_P)$$
, (Q, \leq_Q) : ordered sets

$$f: P \rightarrow Q$$
 is a lattice homomorphism if

$$f\left(\ x \ \lor_P \ y \ \right) \ = \ f(\ x \) \ \lor_Q \ f(\ y \) \qquad \text{join preserving}$$

$$f(x \wedge_P y) = f(x) \wedge_Q f(y)$$
 meet preserving

f is a lattice homomorphism iff it is an order isomorphism

Lecture 8, April 26 27 Lecture 8, April 26

CS357D Spring 2007

Knaster-Tarski fixed point theorem

(P, \leq_P): complete lattice

 $f: P \rightarrow P$ order preserving function (monotone)

greatest fixed point of f: $gfp(f) = \bigwedge \{ x \in P \mid x \leq_P f(x) \}$

least fixed point of f: $lfp(f) = \bigwedge \{ x \in P \mid f(x) \leq_P x \}$

if f is increasing ($x \le_P f(x)$) lfp(f) can be obtained by starting with \bot and repeatedly applying f:

$$\bot_P \; \longrightarrow \; f(\bot_P) \; \longrightarrow \; f(f(\bot_P)) \; \longrightarrow \; f(f(f(\bot_P))) \; \longrightarrow \; \cdots$$

until a fixed point is reached: $f^n(\bot_P) \, = \, f^{n+1}(\bot_P)$

Lecture 8, April 26 29 CS357D Spring 2007

Knaster-Tarski fixed point theorem

(P, \leq_P): complete lattice

 $f: P \rightarrow P$ order preserving function (monotone)

greatest fixed point of f: $gfp(f) = \bigwedge \{ x \in P \mid x \leq_P f(x) \}$

least fixed point of f: $lfp(f) = \bigwedge \{ x \in P \mid f(x) \leq_P x \}$

if f is decreasing $(f(x) \le_P x)$ gfp(f) can be obtained by starting with T and repeatedly applying f:

$$\top_{P} \longrightarrow f(\top_{P}) \longrightarrow f(f(\top_{P})) \longrightarrow f(f(f(\top_{P}))) \longrightarrow \cdots$$

until a fixed point is reached: $f^n(T_P) = f^{n+1}(T_P)$

Lecture 8, April 26 30 CS357D Spring 2007

Ascending and descending chain condition

(P, \leq_P): ordered set

Lecture 8, April 26

- (i) P has length n if the longest chain in P has length n
- (ii) P has finite length if all its chains are finite
- (iii) P satisfies the ascending chain condition (ACC) if for any sequence $x_1 \leq_P x_2 \leq_P \dots$ of elements in P there exists k such that $x_k = x_{k+1} = \dots$.
- (iv) P satisfies the descending chain condition (DCC) if for any sequence $x_1 \ge_P x_2 \ge_P \dots$ of elements in P there exists k such that $x_k = x_{k+1} = \dots$

31

CS357D Spring 2007

Note: A finite lattice satisfies both the ACC and the DCC

Ascending and descending chain condition: examples

length 3 satisfies both ACC and DCC

for finite set X of size n: $(((X), \subseteq))$ length n+1
satisfies both ACC and DCC

Lecture 8, April 26 32 CS357D Spring 2007