CS 357 D

Lecture 8

Orders and Lattices
http://cs357d.stanford.edu/
April 26, 2007

Lecture 8, April 26	I	CS357D Spring 2007

Order

Let P be a set. An order (or partial order) on P is a
binary relation \leq on P such that for all $x, y, z \in P$:
(i) $\mathrm{x} \leq \mathrm{x}$ (reflexivity)
(ii) $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ implies $\mathrm{x} \leq \mathrm{z}$ (transitivity)
(iii) $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{x}=\mathrm{y}$ (antisymmetry)

The relation \leq gives rise to the relation < of strict inequality :

```
x<y in P iff }x\leqy\mathrm{ and }x\not=
```


LATTICES AND ORDER

Supplementary Notes

 based on
Introduction to Lattices and Order

by B.A. Davey and H.A. Priestley Cambridge University Press, 2001

Partially ordered set (Poset)

A set P equipped with an order relation \leq is called a partially ordered set, or poset

Example: (P, \leq) with
$P=\{\perp$, neg, zero, pos,$T\}$
$\leq=\{(\perp, \perp),($ neg, neg $),(z e r o, z e r o),(p o s, p o s)$, ($\mathrm{T}, \mathrm{T}),(\perp$, neg $),(\perp$, zero $),(\perp, \operatorname{pos}),(\perp, T)$, (neg , T) , (zero , T) , (pos , T) \}
note that the elements neg, zero, and pos are not related to each other: we don't have neg \leq zero nor zero \leq neg

Covering relation

```
(P, \leq ) : ordered set
x,y\inP
x}\mathrm{ is covered by }y\mathrm{ , written }x\mathrm{ 々 }y\mathrm{ if
(i) }x<y\mathrm{ , and intuitive meaning: there is
(ii) }x\leqz<y implies z= nothing between \(x\) and \(y\)
```

For a finite set, the ordering relation is determined by the covering relation and v.v.

Lecture 8, April 26	5	CS357D Spring 2007

Hasse diagrams

Hasse diagrams are a pictorial representation of the covering relation:
if $x \lessgtr y$
x and y are connected by an edge, and x is drawn below y

Example:

covering relation for
$\{\perp$, neg, zero, pos,$~ T\}$

Covering relation

Examples:

```
\((N, \leq) \quad x \prec y\) if \(y=x+1\)
\((\Re, \leq)\) no covering relation
\((\wp(X), \subseteq) \quad A \prec B\) if \(B=A \cup\{b\}\) for some \(b \in X / A\)
    powerset of \(X\)
```


Special partially ordered sets

Chain

An ordered set P is a chain if for all $x, y \in P$ either $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$ (all elements are comparable)

Also known as: linearly ordered set
t totally ordered set

Examples:

(Z, \leq) (set of all integers with the standard order)
$(\{\perp, T\},\{(\perp, \perp),(T, T)\})$

Special partially ordered sets

Antichain

An ordered set P is an antichain if for all $x, y \in P$ if $x \leq y$ then $x=y \quad$ (no elements are comparable)

$$
0 \quad 0
$$

Examples:

$(Z,\{(x, x) \mid x \in Z\})$ (set of all integers with reflexive relation) ($\{$ neg, zero, pos \},
$\{($ neg, neg $),($ zero, zero $),($ pos , pos $)\})$

Maps between orders
$\left(P, \leq_{P}\right),\left(Q, \leq_{Q}\right):$ ordered sets
$f: P \rightarrow Q$, function from P to Q, is
(i) monotone (order-preserving) if

$$
x \leq_{p} y \text { implies } f(x) \leq_{Q} f(y)
$$

(ii) an order-embedding if

$$
x \leq p y \quad \text { iff } \quad f(x) \leq_{Q} f(y)
$$

(iii) an order-isomorphism if

$$
x \leq_{p} y \quad \text { iff } \quad f(x) \leq_{Q} f(y) \quad \text { and } \quad f \text { is onto }
$$

Hasse diagrams -- Example
$\wp(\{1,2,3\})=$
$\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Diagram of $(\wp(\{1,2,3\}), \subseteq):$

Lecture 8, April 26
10
CS357D Spring 2007

Maps between orders -- example

monotone, but not an order-embedding

monotone
not order-embedding

monotone
order-embedding

Lecture 8, April 26	13	CS357
Top and bottom -- examples		
$(\wp(X), \subseteq):$	$\perp=\varnothing$	$T=X$
$(\{n \mid n \geq 0\}, \leq):$	$\perp=0$	no top
$(\{x \in R \mid a \leq x \leq b\}, \leq): \perp=a, ~ T=b$		
$(\{x \in R \mid a<x<b\}, \leq):$	no bottom	no top

$\perp=\varnothing$
$T=X$
$(\{n \mid n \geq 0\}, \leq):$

Top and Bottom

$\left(P, S_{P}\right)$: ordered set $\quad x \in P$
x is a bottom (least) element (\perp) of P if $\quad \forall y \in P . x \leq p y$
x is a top (greatest) element (T) of P if $\quad \forall y \in P . y \leq p x$
top and bottom may not exist
top and bottom are unique if they exists

0000000
no top, no bottom

Lecture 8, April 26
14 CS357D Spring 2007

Lifting

Add a bottom element to an otherwise unordered set
$0 \quad 0 \quad 0$
S

Maximal and minimal elements

$\left(P, \leq_{p}\right):$ ordered set, $Q \subseteq P, x \in Q$
x is a maximal element of Q if

$$
\text { for all } y \in Q: \quad x \leq y \quad \text { implies } \quad x=y
$$

x is a minimal element of Q if

for all $y \in Q: \quad y \leq x$ implies $x=y$

Example:

$(\wp(N) \backslash N, \subseteq)$ has maximal elements $N \backslash\{n\}$ for all $n \in N$
Lecture 8, April 26

17 CS357D Spring 2007

Upper bound

$(P, \leq p):$ ordered set, $Q \subseteq P, x \in P$
x is an upper bound of Q if $\quad \forall y \in Q . y \leq p x$
$Q^{u}:\{x \in P \mid \forall y \in Q . y \leq p x\} \quad$ all upper bounds of Q
if Q^{u} has a least element x :
x is called the least upper bound (lub) or supremum (sup) of Q

Down-sets and Up-sets

$\left(P, \leq_{P}\right)$: ordered set, $Q \subseteq P$
Q is an up-set (order filter, increasing set) if for all $x \in Q, y \in P: \quad x \leq y$ implies $y \in Q$
(Q is closed under going up)
Q is a down-set (order ideal, decreasing set) if for all $x \in Q, y \in P: \quad y \leq x$ implies $y \in Q$

(Q is closed under going down)
$\uparrow Q=\{y \in P \mid \exists x \in Q . x \leq y\} \quad$ smallest up-set that includes Q
$\downarrow Q=\{y \in P \mid \exists x \in Q . y \leq x\} \quad$ smallest down-set that includes Q
Lecture 8, April 26
18
CS357D Spring 2007

Lower bound

$(P, \leq p)$: ordered set, $Q \subseteq P, x \in P$
x is a lower bound of Q if $\quad \forall y \in Q . x \leq p y$

$$
Q^{\prime}:\{x \in P \mid \forall y \in Q . x \leq p y\} \quad \text { all lower bounds of } Q
$$

if Q^{\prime} has a greatest element x :
x is called the greatest lower bound (glb) or infimum (inf) of Q

if Q has a bottom element $\perp: \inf Q=\perp$

Upper and lower bounds

```
(P, \leqp ) : ordered set, assume P has \perp and T
    sup P=T inf P = \perp
    sup \varnothing= 便 \varnothing=T Note: }\mp@subsup{\varnothing}{}{u}=\mp@subsup{\varnothing}{}{\prime}=
```

Notation:

| $\sup (\{x, y\})$ | $=x \vee y$ | join | $\sup Q$ |
| :--- | :--- | ---: | :--- |$=\vee Q$

Some properties:
if $x \leq p y \quad$ then $\quad x \wedge y=x \quad$ and $\quad x \vee y=y$

Lattice

Note:
$\varnothing \subseteq P, \quad P \subseteq P$, so in a complete lattice
$\vee \varnothing, \wedge \varnothing, \vee P$ and $\wedge P$ must all exist

- complete lattice must be bounded

Examples:

$(\wp(X), \subseteq)$ is a complete lattice for any set X
$\left(\mathrm{N}, \leq_{\text {div }}\right)$ is a complete lattice

Lattice

(P, S_{P}): ordered set
P is a lattice if $x \wedge y$ and $x \vee y$ exist for all $x, y \in P$
P is a complete lattice if $\quad V Q$ and $\wedge Q$ exist for all $Q \subseteq P$

00

lattice not complete

complete lattice

22 CS357D Spring 2007

Complete lattice -- example

Lattice as algebraic structure

$\left(P, S_{P}\right)$: lattice
Define \wedge and \vee as functions: $\wedge, \vee: P^{2} \rightarrow P$

$$
\begin{aligned}
& x \wedge y=\inf \{x, y\} \\
& x \vee y=\sup \{x, y\}
\end{aligned}
$$

Properties: \wedge, \vee are order preserving

$$
x \leq p z \text { implies } \quad x \wedge y \leq p z \wedge y \quad \text { and } \quad x \vee y \leq p z \vee y
$$

$x \leq p z$ and $y \leq p \dagger$ implies $x \wedge y \leq p z \wedge \dagger$ and
$x \vee y \leq p z \vee \dagger$

Lecture 8, April 26 25 CS357D Spring 2007

Lattice as algebraic structure

Properties:

$\perp \wedge a=\perp$
$\perp \vee a=a$
\perp acts like 0
$T \wedge a=a$
$T \vee a=T$
T acts like 1

Alternative representations: $\quad\left(P, \leq_{p}\right) \quad(P, \wedge, \vee)$

Note:

$$
\text { in }(N, \operatorname{lcm}, \text { gcd }): \quad 0=1 \text { and } 1=0
$$

Lattice as algebraic structure

Properties:
associative: $\quad(x \vee y) \vee z=x \vee(y \vee z) \quad(x \wedge y) \wedge z=x \wedge(y \wedge z)$
commutative:
$x \wedge y=x \wedge y$
$x \vee y=x \vee y$
idempotent:
$x \vee x=x$
$x \wedge x=x$
absorption
$x \wedge(x \vee y)=x$
$x \vee(x \wedge y)=x$

In a lattice, join and meet are determined by the order and v.v.

$$
\left(P, \leq_{P}\right) \quad\left(P, \vee_{P}, \wedge_{P}\right) \quad \text { can be used interchangeably }
$$

Lecture 8, April 26
26
CS357D Spring 2007

Homomorphism

$$
\begin{aligned}
& \left(P, \leq_{P}\right),\left(Q, \leq_{Q}\right): \text { ordered sets } \\
& f: P \rightarrow Q \text { is a lattice homomorphism if } \\
& f\left(x \vee_{P} y\right)=f(x) \vee_{Q} f(y) \quad \text { join preserving } \\
& f\left(x \wedge_{P} y\right)=f(x) \wedge_{Q} f(y) \quad \text { meet preserving }
\end{aligned}
$$

f is a lattice homomorphism iff it is an order isomorphism

Knaster-Tarski fixed point theorem

$\left(P, \leq_{p}\right)$: complete lattice
$f: P \rightarrow P \quad$ order preserving function (monotone)
greatest fixed point of $f: \quad g f p(f)=\bigwedge\left\{x \in P \mid x \leq_{p} f(x)\right\}$
least fixed point of $f: \quad \operatorname{lfp}(f)=\bigwedge\left\{x \in P \mid f(x) \leq_{p} x\right\}$
if f is increasing ($x \leq_{p} f(x)$) lfp(f) can be obtained by starting with \perp and repeatedly applying f :

$$
\perp_{P} \longrightarrow f\left(\perp_{P}\right) \longrightarrow f\left(f\left(\perp_{P}\right)\right) \longrightarrow f\left(f\left(f\left(\perp_{P}\right)\right)\right) \longrightarrow \cdots
$$

until a fixed point is reached:

$$
f^{n}\left(\perp_{p}\right)=f^{n+1}\left(\perp_{p}\right)
$$

Ascending and descending chain condition

(P, \leq_{p}): ordered set
(i) P has length n if the longest chain in P has length n
(ii) P has finite length if all its chains are finite
(iii) P satisfies the ascending chain condition (ACC) if for any sequence $x_{1} \leq p x_{2} \leq p$...... of elements in P there exists k such that $X_{k}=x_{k+1}=\ldots . .$. .
(iv) P satisfies the descending chain condition (DCC) if for any sequence $x_{1} \geq_{p} x_{2} \geq p$.... of elements in P there exists k such that $X_{k}=x_{k+1}=\ldots$.

Note: A finite lattice satisfies both the ACC and the DCC

Knaster-Tarski fixed point theorem

$\left(P, S_{P}\right)$: complete lattice
$f: P \rightarrow P \quad$ order preserving function (monotone)
greatest fixed point of $f: \quad g f p(f)=\bigwedge\left\{x \in P \mid x \leq_{p} f(x)\right\}$
least fixed point of $f: \quad \operatorname{lfp}(f)=\bigwedge\left\{x \in P \mid f(x) \leq_{P} x\right\}$
if f is decreasing $\left(f(x) \leq_{p} x\right) \quad g f p(f)$ can be obtained by starting with T and repeatedly applying f :

$$
\top_{p} \longrightarrow f\left(T_{p}\right) \longrightarrow f\left(f\left(T_{p}\right)\right) \longrightarrow f\left(f\left(f\left(T_{p}\right)\right)\right) \longrightarrow \cdots
$$

until a fixed point is reached: $\quad f^{n}\left(T_{p}\right)=f^{n+1}\left(T_{p}\right)$

Lecture 8, April 26
30
CS357D Spring 2007

Ascending and descending chain condition: examples

(N, \leq)
$\wp(X), \subseteq)$
length 3
satisfies both ACC and DCC
infinite chain
satisfies DCC, but not ACC
for finite set X of size n :
length $n+1$
satisfies both ACC and DCC

