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Order

Let P be a set. An order (or partial order) on P is a
binary relation < on P such that for all x,y,z € P:

(i) x <= x (reflexivity)
(i) x <y and y < z implies x <z (transitivity)
(i) x =y and y < x implies x =y (antisymmetry)

The relation < gives rise to the relation < of strict inequality :

x<y in P iff x<yand x+y

Partially ordered set (Poset)
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A set P equipped with an order relation < is called a partially
ordered set, or poset

Example: (P, <) with

P={L1l,neg, zero, pos, T}

< ={(L,1),(neg,neqg), (zero, zero), ( pos, pos),
(T,T),(L,neg),(L,zero),(L,pos),(L,T),
(neg,T),(zero ,T),(pos,T)}

note that the elements neg , zero , and pos are not related to each other:
we don't have neg < zero nor zero < neg
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Covering relation

(P, <): ordered set Xy € P

X is covered by y , written x < y if

(i) x<y ,and

intuitive meaning: there is

(ii) XxX<z<y implies z=x nothing between x and y

For a finite set, the ordering relation is determined by the
covering relation and v.v.
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Covering relation

Examples:
1 < neg neg 2 T
{J_,neg,zero,pos,T} 1 2 zero zero 2 T
1 < pos pos 2 T

(N, <) x=<2y if y=x+1
(R, =) no covering relation

(9(X), c A<B if B=AU({b} forsomebe X /A

powerset of X
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Hasse diagrams

Hasse diagrams are a pictorial representation of the covering
relation:

if x=<vy
x and y are connected by an edge, and x is drawn below y

Example:

/l\
\|/

covering relation for
{L1,neg,zero,pos, T}
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Special partially ordered sets

Chain

An ordered set P is a chain if for all x,y € P either
x <y or y<x (all elements are comparable)

Also known as: » linearly ordered set
» totally ordered set

Examples:

(Z, <) (set of all integers with the standard order)

({L,ThH.{(L, 1), (T, T)})

0—0—0—0—0—0
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Special partially ordered sets

Antichain

An ordered set P is an antichain if for all x,y € P
if x<y thenx=y (noelements are comparable)

0O O 0O o o o o o

Examples:
(Z.,{(x,x) | xeZ}) (set of all integers with reflexive relation)

({ neg, zero, pos },
{(neg,neg), (zero, zero), (pos,pos)})

Hasse diagrams -- Example
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o(§{1,2,3}) =
{2, {1}y, {2}, {3}, {1.,2},{1,3},{2,3},{1,2,3}}

Diagram of (®({1,2,3}),¢

/T\ 3-element set
<|D><O><<|D 2-element sets
o o o

1-element sets

O-element set

NP
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Maps between orders

(P, <p).(Q, <q) : ordered sets

f:P—>Q , function fromP to Q, is

(i) monotone (order-preserving) if

X <py implies f(x) <q f(y)
(i) an order-embedding if

x <py iff f(x) <q fly)
(iii) an order-isomorphism if

X <py iff f(x) <qfly) and fisonto

Maps between orders -- example
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o

NS

monotone, but not an order-embedding

o
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Maps between orders -- example Top and Bottom

(P, <p) :ordered set X €P

o)
o/é monotone X is a bottom (least) element ( L) of P if VyeP.x <py
SN\ A | _ i
o o) (o) not order-embedding x is a top (greatest) element (T ) of P if VyeP.y <px
top and bottom may not exist
o) top and bottom are unique if they exists
% AN monotone
o) o) o) o T
o% \c/ \o order-embedding /l\
\o/ \o/ o o ) O 0 0o 0o 0O 0O 0 ©
\ |/ no top, no bottom
° 1
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Top and bottom -- examples Lifting
(p(X),c): 1 =0 T = X Add a bottom element to an otherwise unordered set
({nln=01},<) : L =0 no top

©o 0 0o o0 0 0 O © S
({x€eRla<x<b},<): L =a T =050
({x€eRla<x<b}, <) : no bottom  no top

o O O O O O o o o
S.=Suf{l}
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Maximal and minimal elements

Down-sets and Up-sets

(P, <p): orderedset, QcP , xeQ

o

. . . VAR
X is a maximal element of Q if o o (I)
2 maximall ©_ 0\ ©

forallye Q x <y implies x=vy elx:::: ANAN
o0
X is a minimal element of Q if 1 minimal elemépt ©

Q

forallye Q: y < x implies x=y

Example:

(®( N )\N, € ) has maximal elements N\{n} for all n € N

(P, <p): orderedset, Qc P
Q is an up-set ( order filter , increasing set ) if
for all xeQ, yeP: x <y implies y € Q
(Q is closed under going up)

Q is a down-set ( order ideal , decreasing set ) if

for all xeQ, yeP: y < x implies y € Q

(Q is closed under going down)

A

TQ =4 yepP | Ixe@ . x < y } smallest up-set that includes Q

lQ=§{yeP|IxeQ .y < x}  smallest down-set that includes Q
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Upper bound

Lower bound

(P, <p): orderedset, Q<P ,xeP
x is an upper bound of Q if VyeQ.y <px
Q:{xeP| VyeQ.y <px } all upper bounds of Q

if Q“ has a least element x:
x is called the least upper bound (lub) or supremum (sup) of Q

if Q has a fop
element T:
supQ =T
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(P, <p): orderedset, QCP,xeP
x is a lower bound of Q if VyeQ.x <py
Q:{xeP| VyeQ.x=<py } all lower bounds of Q

if Q' has a greatest element x:
X is called the greatest lower bound (glb) or infimum (inf) of Q

if Q has a bottom
element L: inf Q = L

Lecture 8, April 26 20 CS357D Spring 2007




Upper and lower bounds

Lattice

(P, <p): ordered set, assume P has L and T

(P, <p): ordered set

P is a lattice if XAy and xVy existforallx,yeP

P is a complete lattice if \/qQ and AQ exist for all Q € P

supP =T infP =1

supd =1 infQd =T Note: @4 = &' = P
Notation:

sup({x,y}) = xVvy join supQ:\/Q

inf({x,y}) = xAy meet infQ = AQ
Some properties:

if x<py then XAy=x and xVy=y
Lecture 8, April 26 21 CS357D Spring 2007

O,
o \
| (o)
o o <|) o o / | \
o (o) (o} o
I
(o} [} [o}
: \ / o
o
not a lattice not a complete
lattice not complete lattice lattice
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Lattice

Complete lattice -- example

Note:

bcP , PSP, so inacomplete lattice

V& ,A@, VP and AP must all exist
e complete lattice must be bounded

Examples:

(®(X),c) is acomplete lattice for any set X

(N, <av) is a complete lattice

divides relation

//O\\ X <avy if x dividesy

\/\ | x Ay=ged(x,y)
4 6 9 14
2 3 5 7 1
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\\ // Tdiv = O
1 Lav = 1
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Lattice as algebraic structure Lattice as algebraic structure

(P, <p): lattice Properties:

Define A and V as functions: A ,v:P2— P associative: (xVy)Vz=xV(yVz) (xAy)Az=xA(yAz)
x Ay = infix,y} commutative: x Ay =x/Ay xVy=xVy
XVy = sup{x,y}

Properties: A ,Vv are order preserving idempotent: xVix=x XAX=x
X <pz implies xAYy <pzAy and xVy<pzVy absorption xA(xVy)=x xV (xAy)=x
x <pz andy <pt implies x Ay <pzAt and In a lattice, join and meet are determined by the order and v.v.

xVy<ezVt (P, <p) (P,Vp ,Ap ) can be used interchangeably
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Lattice as algebraic structure

Homomorphism
Properties: (P, <p),(Q, <q): ordered sets
LlAaa=1 lva=a 1 acts like O f:P— Q is alattice homomorphism if
TAa=a Tva=T T acts like 1

f{xVpy)="Fx)Vq fly) join preserving
Alternative representations: (P, <p) (P,A,V) flxApy) =1(x) Ao fly)

meet preserving
Note:

f is a lattice homomorphism iff it is an order isomorphism
in(N, lcm, gcd ): O0=1 and 1=0
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Knaster-Tarski fixed point theorem

(P, <p): complete lattice

f:Pp-oP order preserving function (monotone)

greatest fixed point of f : ofp(f) = /\ {x€P|x <p f(x)}

least fixed point of f : Up(f) = N{xeP|f(x) <p x}

if f isincreasing (x <p f(x)) [fp(F) can be obtained by
starting with L and repeatedly applying f :

Lp — f(Lp) — f(f(Lp)) — f(f(f(Lp))) — -

until a fixed point is reached: f*(Lp) = 1 (Lp)
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Knaster-Tarski fixed point theorem

(P, <p): complete lattice

f:Pp-opP order preserving function (monotone)

greatest fixed point of f : ofp(f) = /\ {x€P|x <p f(x)}

least fixed point of f : Up(f) = N{xeP|f(x) <p x}

if f is decreasing (f(x) <p x) gfp(f) can be obtained by
starting with T and repeatedly applying f :

Tp — f(Tp) — f(f(Tp)) — F(f(f(Tp))) — -

until a fixed point is reached: f(Tp) = fF1(Tp)
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Ascending and descending chain condition

(P, <p): ordered set

(i) P has length n if the longest chain in P has length n
(ii) P has finite length if all its chains are finite

(iii) P satisfies the ascending chain condition (ACC) if for any
sequence X; <p X2 <p ..... of elements in P there exists k such
that Xk = Xk41 = weee ©

(iv) P satisfies the descending chain condition (DCC) if for any
sequence X; >p X2 >p ... of elements in P there exists k such
that Xk = Xks1 = e

Note: A finite lattice satisfies both the ACC and the DCC

Ascending and descending chain condition: examples
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(e]
/l\ length 3
0\0 ° satisfies both ACC and DCC
I/

infinite chain

(N, <) .
satisfies DCC, but not ACC

for finite set X of size n:
(p(X),c)
length n+l

satisfies both ACC and DCC
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